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Background

For time-to-event data
* Cox proportional hazards (PH) model and Log-rank test are the
commonly used methods.

(PH hazard ratio between two arms is constant over time)

e Results typically reported as
— Kaplan-Meier (KM) curves, including estimated median survival time
— Log-rank test: p-Values (testing)
— Cox PH model: hazard ratio & p-Values (estimation & testing)

*  When two hazard rates are non-proportional, the power is lost for both log-rank
& Cox PH test

— Log-rank no longer the most powerful test
— the score test based on Cox model is no longer the best partial-likelihood statistics
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Examples - KM curves for overall survival
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Background — Non-proportional Hazards

Type of non-proportionality

— Quantitative Interaction (Non-Crossover Interaction)

The hazards ratio varies over time in magnitude but not in direction.
(Cox PH model has moderate performance with mild quantitative interaction)

— Qualitative Interaction (Crossover Interaction)

The hazards ratio varies over time with change in direction.

(Cox PH model has substantially low performance under qualitative interaction;
interpretation of test results not meaningful)

Sources of non-proportionality

— Treatment-by-time interaction
— Subgroups
— Unobservable or un-measureable random effect (frailty)
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What To Do When NPH is known?

Once the evidence of non-proportional hazards is
known then the next step would be to incorporate this
information in the analyses.

NPH impacts

— Trial design: Sample size /power analysis
— Data analysis: Testing and estimate

But what method to use amongst many available?
Understanding the extent and source of NPH would be helpful.



Some Commonly Used Methods

* Parametric Model (Weibull, AFT, etc.)
* Piecewise Exponential Model

* Weighted Log-Rank Test
— Log-rank with adaptive weights
e  Max-Combo Test

Rank based

 Weighted Kaplan-Meier Test
* Restricted Mean Survival Time (RMST)

K-M based

e Approaches using Cox PH
— Treatment-by-covariate interaction by including time varying covariate
— Treatment-by-stratum interaction by combining stratum-specific estimates
— Cox PH model with change point (HRs for two or more timeperiods)

* Other Methods
— Renyi Type Tests
— Gamma Frailty Model
— More...
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Weighted Log-Rank Test
Test statistic Wy pr = U/NV

_j@&aw() jK(s Z sz(s)

V = IK(S)

Y, (S)Y (s)

AN (s)

* N ;(s): #of failures at time s from group j (j =1,2)
& 17] (s) : #of subjects at risk at time s from group j (j=1,2)and Y (s) =Y,(s) + Y, (s)
* K(s) : for G”7 statistics

K(s)=[S(s _)]p [1-S(s _)]7 S is the Kaplan - Meier estimators for the pooled sample

Pros
* Easy to implement & offers flexibilities on choice of weight for different scenarios

* With correct choice of weight, the efficiency of this test is much better than LRT and Cox model
under NPH

Cons
» Correct choice of weights 1s a challenge
A,mp,im,, The efficiency of this test could be very low with a improper weight
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Weighted Kaplan-Meier Test

* Pepe and Fleming (1989) proposed a test for a general class of alternative:
* Test Statistic:

H, =S§,(t)=5,(¢) for all .

Ve = [ KONS, 0=, 0}

where K(¢) = Aé NOIEY0 ~
n,/(n,+ny) G, (¢)+n,/(n+n,)C, (¢)

* 3’1 (t) and S’z (t) are K - M estimators for the survival functions

S @1 (¢) and 6’2 (¢) are K - M estimators for censoring distribution functions

The Weighted Kaplan-Meier Test Statistic is the Area between two KM Curves

Vwkwm is the weighted difference of area under curve (AUC)
of two K-M curves; Special case of K(t) = 1

Pros

Concept is easy to understand

Choice of weight could be objective (e.g., only depends on censoring)
Cons

When weight is determined by censoring, the performance of the test becomes sensitive to the censoring




Weight Functions — Treatment Effect Testing

» (Weighted) log-rank tests

* Weight function Weight Functions
— —\Y
FH(p,]/):S(t)p(l—S(t)) 100- §= e
" -' - -
* FH(0,0): log-rank test v e Lot
075~ % ° 13
° FH(O,].)I late effect - “ 7 e Weight functions
— % ;’ . L Log-rank
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(i.e., censoring survival function)

weights monotonically decreasing with time
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Restricted Mean Survival Time (RMST)

fot S(wdu

t —
« Tr(®) = J, S(wdu =1t X =t X S(t)
— S(t): mean survival function from 0 to t
— Tpg: mean survival time from 0 to t or RMST

* Pros

— RMST is a good point estimate under NPH comparing to HR from
Cox PH model

— RMST can easily be estimated from K-M method
* Cons

— Requires a proper landmark time and value of point estimate can
be greatly influenced by later time variability



Max-Combo Test

(FDA-Duke-Margolis NPH Workshop 2018)

A combination of FH(p,y) weighted log-rank tests

Details
— LetZ,,Z,,7Z5,Z,4 be test statistics of weighted log-rank tests with weights
FH(0,0), FH(0,1), FH(1,0), and FH(1,1).
— Test statistic:
Zmax = max(|Z4], 23], 1Z5], |Z41)
— Under Ho, (Z,,Z5,Z5,Z,) = MVN,(0,X)

e X = (Jif)4><4' where

ni+n, (o HO%BW® (AN ()+AN(6)-1) [d{N1(0)+Nz(8)}
nin, Jo Ki(®) Kin () AOI A0 (1 Y1()+75 () -1 )l Y1(D)+Y5(D)

* @Gill, 1980; Kosorok and Lin, 1999; Karrison et al., 2016
— P-value: derived via integration of multi-variate Normal distribution

O-ij =

Pros

Well-controlled type | error rate; Robust to various profiles of NPH in terms of power

Cons

Clinical justification on weight functions; Lack of coherent estimation procedure (weighted HR may

not suffice) 11
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Simulation Studies

1. To compare available methods under quantitative &
gualitative interactions

Type | error and power; one-sided vs two-sided testing?
2. To examine Cox model with change point.

Simulation set up
e N =500 (1:1 ratio); 10,000 replications

* Data are simulated from piecewise exponential survival model.

* Independent exponential censoring

Different scenarios
— Proportional hazards (PH)

— Non-proportional hazards (NPH)
* Early/Diminishing effect
* Late/Delayed effect
* Crossing hazards

APmprielary
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Different Scenarios (non-crossing hazards)

Proportional Hazards

Hazard Ratio Kaplan-Meier Curves
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Different Scenarios (non-crossing hazards)

Late/Delayed Effect

Hazard Ratio Kaplan-Meier Curves
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Comparison of Methods - Type | Error
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Comparison of Methods under non-crossing hazards-Power
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1.00- 1.00-

0.75- 0.75-
o Test - Test
% 0.50- [ Ore-sided g 050- ™ One-sided
& I Two-sided & B Two-sided

- . HR1=0.75

HR2=1
Change pt at 24
0.00- 0.00-
Logrank  FHO.1)  FH(10) MF:t(I‘Ill;C)is Maxcombo WKM  RMST Logrank FH(O1)  FH(1,0) MFHt(I‘IlJC)I Max.combo WKM  RMST
etnods
Delayed Treatment Effect
1.00- .
s Max-combo is robust to PH, and early, late
effect scenarios of NPH examined.
075~
s WKM less powerful for delayed effect

. Tos ** One or two sided testing gives similar power.
£ 0.50- [ one-sided
a B Two-sided

025- HR1=1

. HR2=0.6
. mil Change ptat 7 17

A,mpﬁmq FHO.1)  FH(1.0) MF:t(rlc,:c)’SMax,combo WKM  RMST



Crossing Hazards Scenario 1

K-M plot
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Power — Varying Crossing Scenarios

Crossing Hazards 2
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Power — Treatment Effect Testing (Cont’d)

Crossing Hazards 4
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Survival probability
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Impact of Change Point Location on Power
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Power is impacted by the location of change points

One-sided testing
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Cox Model with Change Point Model

Treatment Effect Estimation

Cox PH model with singe change point: R fct/SAS macro
Details

— AEIZ, %) = A (t) ~exp(BZ " Liper) + B2 Z - Le>2))

— Z denotes trt arm (1: experimental; O: control)

— 1 denotes the change point location (or lag parameter)

s T is estimated through maximizing profile partial likelihood [Liang et al., 1990]

Example Hazard Ratio Profile Partial Likelihood wrt t
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Illustrative Example II: Hess (1994)

Kaplan-Meier Estimates for Gastric Cancer Data
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Over all HR= 1.30 ( log rank p-Value 0.630)
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Summary

* Challenging to find one optimal analytical method under varying scenarios.
* All methods have their pros and cons

For treatment effect testing under quantitative interaction (no-crossing hazards)
*  Max-combo method appears to be robust to different scenarios of NPH examined

- Requires clinical justification of weight functions
*  The G-rho-gamma family of weighted log-rank tests with proper choice of weights have good performance

- Incorrect weight choice adversely impacts performance
*  The weighted Kaplan-Meier test has good performance and is robust for early treatment effect
- Weights are data driven and do not require pre-specification

*  One and two-sided tests give almost same power

For treatment effect testing under qualitative interaction (crossing hazards)
*  Most methods lost power under qualitative interaction
- p-Value may be hard to interpret
- interpretation of results require visual inspection of data for further interpretation

* one-sided testing gives lower power compared to two-sided testing in most scenarios; one sided test is
more appropriate to examine treatment benefit

For treatment effect estimation
*  One summary statistics (e.g., HR from Cox PH) may not be sufficient.

— Cox PH model with change point(s) may serve as an alternative method for NPH especially crossing
hazards.

. More work needs to be done... 25
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