
Automated Identification of Social Media
Bots Using Deepfake Text Detection

Sina Mahdipour Saravani(B), Indrajit Ray, and Indrakshi Ray

Colorado State University, Fort Collins, CO 80523, USA
{sinamps,indrajit.ray,indrakshi.ray}@colostate.edu

Abstract. Social networks are playing an increasingly important role
in modern society. Social media bots are also on the rise. Bots can prop-
agate misinformation and spam, thereby influencing economy, politics,
and healthcare. The progress in Natural Language Processing (NLP)
techniques makes bots more deceptive and harder to detect. Easy avail-
ability of readily deployable bots empowers the attacker to perform mali-
cious activities; this makes bot detection an important problem in social
networks. Researchers have worked on the problem of bot detection.
Most research focus on identifying bot accounts in social media; how-
ever, the meta-data needed for bot account detection is unavailable in
many cases. Moreover, if the account is controlled by a cyborg (a bot-
assisted human or human-assisted bot) such detection mechanisms will
fail. Consequently, we focus on identifying bots on the basis of textual
contents of posts they make in the social media, which we refer to as fake
posts. NLP techniques based on Deep Learning appear to be the most
promising approach for fake text detection. We employ an end-to-end
neural network architecture for deep fake text detection on a real-world
Twitter dataset containing deceptive Tweets. Our experiments achieve
the state of the art performance and improve the classification accuracy
by 2% compared to previously tested models. Moreover, our content-
level approach can be used for fake posts detection in social media in
real-time. Detecting fake texts before it gets propagated will help curb
the spread of misinformation.

Keywords: Bot detection · Deepfake text · NLP · Deep learning ·
Security

1 Introduction

Social media is extensively being used as a tool of communication and free discus-
sion. The number of active users of Twitter, for example, has increased approxi-
mately by a factor of 11 in a period of 9 years. The huge amount of information

This work was supported in part by funds from NIST under award number
60NANB18D204, and from NSF under award number CNS 2027750, CNS 1822118
and from NIST, Statnett, Cyber Risk Research, AMI, ARL, and from DoE NEUP
Program contract number DE-NE0008986.

c© Springer Nature Switzerland AG 2021
S. Tripathy et al. (Eds.): ICISS 2021, LNCS 13146, pp. 111–123, 2021.
https://doi.org/10.1007/978-3-030-92571-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92571-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-92571-0_7


112 S. M. Saravani et al.

being propagated world-wide through social media affects the society, public
decisions, and their actions [3]. Hence, it is important to prevent malevolent
parties from misusing this massive potential in their favor. Popularity of social
networks has increased cyber bots and Sybils. Some studies report that 9 to 20%
of Twitter users are bots and they contribute to 35% of Twitter’s total contents
[1,25]. These bots can be manipulated to propagate misinformation and spam,
change the stock market value by trending fake information for financial gain,
affect the elections for political gain, and more [12]. With the emerging progress
in Natural Language Processing (NLP), bots have become more deceptive and
harder to detect. Easily available bots that can be readily deployed empowers
attackers so that they can perform malicious activities more easily. Consequently,
bot detection is critical in social networks [16].

Most research focus on bot detection at the account-level. However, often
account-level information is unavailable for privacy reasons. Also, Cyborgs
(human-assisted bots or bot-assisted humans), which are common in Twitter [7],
can combine normal human behaviour with malicious bot controlled activities
with the help of the human operator and the advanced artificial intelligence tech-
niques and evade account-level bot detection systems. Consequently, we focus
on using the content to distinguish whether it is generated by a human or a bot.

Problem Statement. We present a deep neural network architecture to distin-
guish between bot-generated and human-generated texts. We use a real world
Twitter dataset in this research and consider the detection problem as a text
classification problem where given a Tweet, the objective is to determine whether
it is written by a human user or generated by a cyber bot.

Our Approach and Contributions. Deep learning appears to be the most
promising approach for textual content classification due to its automatic fea-
ture extraction and holistic language representation as demonstrated by empir-
ical results in NLP [9]. The fact that the most advanced cyber bots have also
used and benefited from the fast-paced improvements in machine learning [17]
further supports our decision to focus on deep learning techniques to detect and
defeat them, as they can leverage the same benefits. We employ a set of neural
network architectures for distinguishing deep fake bot-generated Tweets from
human-written Tweets. We also present the novel architecture by [19] consist-
ing of BERT, BiLSTM, NeXtVLAD, and two fully-connected layers to show its
performance in this classification task. Our contributions are as follows:

– Our models improve the classification accuracy of the best previous models by
incorporating a domain-specific pre-trained BERT model, highlighting their
efficacy.

– This improvement is achieved on a real world Twitter dataset that includes
bot-generated samples that are even difficult for human readers to detect.

– We provide explanation on applying the NeXtVLAD parametric pooling layer
– which has proved successful in classification and ranking tasks in computer
vision – to NLP problems and assess its usability in a classification architec-
ture for bot detection.

– Our approach can be used for real-time fake text detection.



Automated Identification of Bots Using Deepfake Text Detection 113

2 NLP for Bot Detection

2.1 Challenges of NLP for Bot Detection

Since we only use textual content of posts for detection, our work falls in the
category of text classification. In NLP with deep learning, text needs to be first
represented by a reasonable numeric vector before any deep learning models can
be applied to it. This introduces an additional complexity compared to computer
vision applications wherein deep fake detection has been investigated in great
depths. Even simplest fake text generation methods like search-and-replace can
trick human readers [11]. The more advanced approaches, however, are much
more capable and can generate totally new sentences or even interact with human
users in an online conversation. The technology behind these advanced bots relies
on NLP with deep learning and hence [11] suggests that the best defense against
them may be NLP with deep learning itself.

An important challenge in processing social media text is its differences from
traditional and formal language. Predominantly, text in social media is short
in length and is informal both literally and grammatically. Also, it includes
various entities such as hashtags, mention tokens, and emojis. These differences
add to the complexity of providing automatic solution to any NLP problem on
social media data. The language informality in social media also favors the use
of automatic feature extraction and language representation models since it is
almost impossible to manually engineer features that can represent words and
sentences of an informal infinite natural language. In addition, machine learning
can discover statistical patterns in data that are not recognizable by humans but
help in detection of machine-generated text [15].

2.2 Dataset

Since most researchers have worked on detecting bots at account-level, the num-
ber of available fake text datasets is very limited. Cresci’s dataset [8], also used in
[14,18], is among the few such datasets; however, an important factor in choosing
the dataset for us was the quality of the text and how similar the bot-generated
Tweets are to human-generated ones. In other words, we wanted a deepfake text
dataset that contains text samples generated by recent advanced deep language
models. Cresci’s text samples [8] follow specific patterns that can be indicator
features for being generated by bots which renders them easily detectable and
hence unsuitable according to our criteria.

In the deep fake text domain, language models such as GPT, RNN, LSTM,
GROVER, etc. have reached the capability of generating high quality text and
some studies report that the humans detection rate against these text samples
is near chance [2,15]. Researchers have already studied techniques to detect bot-
generated deep fake text outside social media [2,4,13,15,28], but to assess their
capability in social media, we need to work with in-domain data.



114 S. M. Saravani et al.

Table 1. Example data points from TweepFake anonymized dataset.

Tweet text Label

The world needs more whale stories. I would love to know what whalefacts
are hiding in them

GPT-2 bot

I will make [FOLLOWERS OF A RELIGION] victims. They come into the
United States but should have been crippled so I flourish. I can do it.
@USERNAME #debate

RNN bot

It literally what time of gucci shorts or not tolerate Libra slander on my face Other bot

I think if i put my mind to it, I could put a tree in my house like they do at
the Cherry hill mall

Human

We work with the TweepFake - Twitter deepfake text Dataset [11] for both
model training and evaluation. This dataset [11] (published in Kaggle1) contains
annotated examples of human-generated and bot-generated Tweets. Tweets are
collected from 23 different bots that imitate 17 human accounts. Table 1 shows
few examples. The generator bots that produced the fake Tweets are language
models such as GPT-2, RNN, OpenAI, Markov Chains, etc. and do not have
the aforementioned problems. The data samples are deep fake text examples
mimicking genuine Tweets and meet our criteria. This dataset includes 25572
Tweets and is balanced between the bot and human classes.

3 Related Work

We discuss related work along two categories: (i) bot detection at content-level,
and (ii) fake text detection outside social media.

Bot Detection at Content-Level. Authors in [10] work on the PAN Author
Profiling dataset [23] to detect bot-generated Tweets. Their model uses the pre-
trained BERTBase model to get contextual embedding of the Tweet and concate-
nates it with emoji2vec embedding and a few binary features to feed to either
a Logistic Regression classifier or a deep neural network classifier. It is worth
mentioning that they do not fine-tune BERT representations in their training
phase. They report a weighted F1 score of 83.35 in the bot detection task by
using this architecture. Authors in [18], focus on content-level classification, but
not only based on the Tweet text, but also using Tweet object’s metadata such
as the number of Retweets and replies or favorite counts to augment the GloVe
embedding features for a better classification. They use an LSTM layer to learn
sequential features of the Tweet text and concatenate it with metadata features
before applying fully-connected classification layers. They also calculate a clas-
sification score just by the LSTM’s representation and use a weighted average
loss based on the two outputs for training. Finally, the authors of [11], who have
published the dataset that we use in this work, have drawn attention to detecting
deep fake text in social media platforms. In addition to the published dataset,
1 https://www.kaggle.com/mtesconi/twitter-deep-fake-text.

https://www.kaggle.com/mtesconi/twitter-deep-fake-text


Automated Identification of Bots Using Deepfake Text Detection 115

they also contribute by testing a set of machine learning detection methods on
the TweepFake dataset. Their performance results are directly comparable with
ours. For a more detailed review of social media bot detection techniques and
related work, we refer the reader to [3] and [17].

Fake Text Detection Outside Social Media. The following studies inves-
tigate the fake text detection outside social media domain but are completely
relevant to our task. Authors in [28] present a text generation model called
GROVER which is based on GPT-2 and raise the concern about the need to
build verification techniques against such generator models. GROVER’s gener-
ated fake news is even better than human-written disinformation at deceiving
human readers [28]. They train and evaluate their model with a fake news dataset
that they have crawled from 2016 to 2019. In [2], authors combine available lan-
guage models to generate fake reviews with desired sentiment for Amazon and
Yelp. They study how human readers and machine learning generator-based clas-
sifiers perform on detecting these generated reviews. Their findings are that the
human readers’ performance in detecting those generated reviews was roughly
equal to chance and machine learning detection mechanisms, despite perform-
ing better than humans, still need much more improvements. Authors of [15]
focus on comparing humans and machines in detecting deep fake texts. They
base their evaluations on GPT-2-generated text and use BERT as the primary
discriminator model. They state that since text generator models are trained
to fool humans, despite being successful in achieving that objective, introduce
abnormalities that make the detection task easy for automatic discriminators.
Their experiments also show that fake text detection is more difficult when facing
short-length text.

Comparing these related studies with our work, we study the detection of
short deep fake text samples, from real Twitter data, with the objective of detect-
ing bots in social networking platforms. This work is different from detecting
bots at account-level [6,7,14,16]. Similar to [10,11] we also use transformer-
based models to detect fake text, but unlike [10], we fine-tune all of the model
parameters in real-time at training phase. Also, we use a domain-specific pre-
trained BERT model, namely COVID Twitter BERT (CTBERT-v2) [22], which
is different from [11], and this results in performance improvements.

4 Methodology

In this section, we describe our methodology to detect bot-generated text2. Our
model solely uses a single Tweet’s text in order to determine whether it is gen-
erated by a bot or a human user.

We do not apply any text preprocessing techniques other than tokenization,
as the language representation layer in our architecture, BERT, is capable of
producing vector representations for all tokens and sub-tokens on the fly. We

2 Our code for this paper is published in the GitHub repository at https://github.
com/sinamps/bot-detection.

https://github.com/sinamps/bot-detection
https://github.com/sinamps/bot-detection


116 S. M. Saravani et al.

Fig. 1. The presented model for detecting bot-generated text content. M is the number
of tokens extracted from input text. N is the BERT representation dimension. λ is the
expansion factor. G is the number of groups to split the input after expansion in
NeXtVLAD layer. K is the number of NeXtVLAD clusters.

specifically use the model and tokenizer of CTBERT-v2 [22] from the Hugging
Face transformers library [27]. Section 4.1 provides more details about this lan-
guage model. We used the term “token” instead of “word” here to be more
general and even cover strings that are not officially words, such as emojis.
Examples of sub-tokens are prefixes and suffixes such as “ed” in “educated”.

As practiced in the literature [24], we top this layer by a BiLSTM component
to further capture temporal dependencies. These temporal dependencies refer to
positional and sequential information as to where the token occurs in the Tweet.
Then the outputs of the BiLSTM layer are fed into a VLAD neural component,
called NeXtVLAD, for further enhancement. We chose to use NeXtVLAD as
our pooling layer inspired by its promising performance in computer vision [20]
and the fact that many neural network layers have empirically performed well in
both computer vision and natural language processing. The last component of
our model is composed of two fully-connected dense layers to perform the final
classification of the feature vectors to class labels. In the following subsections,
each of these model components are explained in more details. The architecture
of our model is depicted in Fig. 1 and is almost identical to the neural network
architecture in [19].

4.1 BERT

Bidirectional Encoder Representations from Transformers (BERT) is a language
representation model that learns a bidirectional representation from both the left
and right contexts of each token and has been proven to enhance the state-of-
the-art performance on eleven NLP tasks [9]. This model transforms text tokens
and sentences into N -dimensional vectors that represent their meanings with
consideration of their contexts. This calculation is based on the attention score
mechanism [26] that relates the effect of each token to all other tokens and to
the task objective. BERT also builds an overall encyclopedic representation for
the whole Tweet.



Automated Identification of Bots Using Deepfake Text Detection 117

The transformer-based models, like BERT, have been investigated and
tweaked in recent years and have been proposed in various configuration and
sizes. Their model parameters, that are used to calculate the numerical vec-
tor representations for words, are learnt in a pre-training phase. These models
benefit from using this pre-trained parameters that are learnt in next sentence
prediction and masked language modeling tasks on huge collections of unlabeled
data. Although such training results in a very powerful general language model,
but as language and text form differs from domain to domain, they can be pre-
trained for data from a specific domain to reach even greater performance. In
this work, we use a domain-specific BERTLarge model which is pre-trained on
COVID-19-related Tweets [22]. Our expectation of gaining performance improve-
ments by using a model that is specifically pre-trained on Tweets is met by our
observed results. This approach is used in other studies too [5].

4.2 BiLSTM

The BiLSTM layer is used to capture temporal relations (relations showing the
sequential position of the token with respect to other tokens) in the sentence in
both directions. Even though BERT itself considers both directions in capturing
context information, the model may benefit from another sequence-specific com-
ponent on top of it. Note that we do not encode the whole sequence of tokens into
a single representation by the BiLSTM component; instead, we use it to capture
the temporal features and incorporate them to update and fine-tune the vector
representation of each token. About LSTM’s representation for a sentence, we
should mention that it updates the representation of each token based on its
previous tokens and the representation of the last token is considered as the
representation of the sentence itself. Hence, BiLSTM introduces a bias toward
tokens that appear at two ends of a sentence. We try to remove this bias by
using the VLAD component.

4.3 VLAD

Pooling layers intend to summarize the important information from the huge
number of features that previous layers produce and remove the redundant vari-
ance in the feature space. Maximum pooling and average pooling are the most
common pooling layers; however, we incorporate NeXtVLAD parametric pool-
ing and compare it with them in this work. We start this section by presenting
some fundamental information about Bag of Visual Words and build on top of it
to describe Vector of Locally Aggregated Descriptors (VLAD). Then we explain
how we used VLAD in NLP.

Bag of Visual Words. Bag of visual words is a simple approach to encode
data in the computer vision domain which is very similar to the Bag of Words
model in natural language processing that represents sentences as a bag of its
words. The procedure in the bag of visual words model is that for all images
in a dataset, first they are either partitioned into segments or transformed into



118 S. M. Saravani et al.

lower-dimension local features such as SIFT [21] descriptors, and then, the Bag
of Visual Words model encodes each image into the frequency vector of each of
those segments or features.

Vector of Locally Aggregated Descriptors (VLAD). Built on top of the
Bag of Visual Words model, VLAD model also decomposes all data samples
of the dataset into lower-dimension features or segments. However, VLAD goes
beyond the feature frequency encoding. It considers a number of centroids (K),
which is a hyper-parameter of the model, to cluster the feature set into K clus-
ters. In other words, all features from all data instances of the whole dataset
are extracted and then clustered into K categories. Now, for representing each
data sample, first its feature vectors are extracted and assigned to their nearest
cluster centroid. Then, the vector difference of these features from their cor-
responding cluster centroids are computed. These difference vectors are called
residuals. For all feature vectors that belong to the same cluster, their residuals
are accumulated together. This produces a set of K accumulated residuals for
each data sample which is considered as the representation of that data sample.
Each residual is N -dimensional just like the feature vectors and hence the rep-
resentation is of dimension K × N where K is the number of clusters and N is
the dimension of each feature vector.

NetVLAD. The VLAD model in its original form cannot be used in a neural
network architecture as it is not trainable. The reason behind that is the non-
differentiable hard assignment of features to clusters. The idea of NetVLAD was
to replace that hard assignment with a softmax scoring function with parameters
that can be learned from labeled data. Another important aspect of NetVLAD’s
procedure to mention, is that by swapping the hard assignment with softmax,
now model requires to compute the residuals for each feature vector from all clus-
ter centroids and assign probability scores to them (since it does not know which
cluster the feature vector belongs to beforehand). Also, the cluster centroids in
NetVLAD are learnt jointly with other model parameters during the training
phase. NeXtVLAD, which is described in the next section, is an improved ver-
sion of NetVLAD.

NeXtVLAD Component in Our Architecture. NeXtVLAD first expands
its input by a hyper-parameter factor (λ = 4 in our case), then partitions it into
groups of smaller feature vectors and then continues similarly to NetVLAD. The
other important difference with NetVLAD is that the soft assignment function
includes an additional sigmoid function that computes attention scores over the
groups. This scoring module intends to find the input features that are most rel-
evant to make the correct label prediction for each data sample. The NeXtVLAD
component in our architecture clusters the feature vectors (token representation
vectors) that are produced by the previous layers into K clusters, computes
the difference of each token’s feature vectors from all of the cluster centroids,
and then represents the whole Tweet with these difference vectors. The clus-
ter centroids are initialized randomly but are learnt jointly with other model
parameters in the training phase. For detailed description of how NeXtVLAD



Automated Identification of Bots Using Deepfake Text Detection 119

works and its mathematical formulation, we refer the reader to its original paper
[20]. Comparing NeXtVLAD with NetVLAD, it requires fewer number of model
parameters and is more resilient to overfitting [20]. As the output of this layer,
we have a K × λN/G matrix that represents the whole Tweet and we feed it to
a classifier to predict the final label.

The NeXtVLAD layer, by its computations performed across all sections of
its input, removes the LSTM’s bias of assigning higher weights to the most recent
tokens.

4.4 Classifier

The classification layer in our model consists of two fully-connected layers. We
reduce the feature vector dimension and introduce further non-linearity by using
a Leaky ReLU activation function in between the two layers. The second layer
compresses the information in two nodes. We use a softmax on top of these nodes
to compute the probability of belonging to each class.

5 Experiments and Results

We implemented our models with PyTorch and Keras frameworks and used
three GeForce RTX 2080 Ti GPU cards for running the experiments. We report
the details on hyperparameter tuning and model selection in the linked GitHub
repository3.

Authors in [11], in addition to publishing the dataset, have conducted
experiments with a set of machine learning algorithm for detecting the bot-
generated Tweets. Their results are directly comparable with our results in
Table 2. The presented performance scores are computed on the TweepFake
test set. As the transformer-based models had the best performance accord-
ing to [11], we expanded experiments based on transformers by testing other
pre-trained weights and other auxiliary model components. Table 3 shows the
detailed configurations of models that we have experimented with. Our model
(Cfg 1) achieves the best precision and F1 score for the Human class and the
best F1 score for the Bot class. Also, its overall accuracy is the best value we
reached in our experiments. The accuracy is a good measurement criteria in
these experiments, as the dataset is balanced. Our model configurations 1 and 3
improve the accuracy by 2% over the best model from experiments in [11] which
is a fine-tuned RoBERTa (also a transformer-based model).

As our results show, our model has introduced a noticeable performance
improvement. A comparison of BERT (General-FT) with BERT (Domain-FT)
Cfg 3 in Table 2 demonstrates that this improvement is mainly due to the
domain-specific pre-training. Comparing NeXtVLAD with two very common
pooling layers, average pooling and max pooling (Cfg 5 and Cfg 6), NeXtVLAD

3 https://github.com/sinamps/bot-detection.

https://github.com/sinamps/bot-detection


120 S. M. Saravani et al.

Table 2. Results obtained from our experiments for different bot detection mechanisms
on the TweepFake test set (the first row is reported from [11]). FT means that the
model is fine-tuned. Domain means that the model is pre-trained on domain-specific
data while General means that is not the case. twitter-glove-200 is the pre-trained 200-
dimensional GloVe embeddings on Tweets. Cfg stands for configuration (the details
of these configurations are provided in Table 3). Values are rounded to the nearest
hundredths. This table is directly comparable with the results reported in [11].

Model Human Bot All

Precision Recall F1 Precision Recall F1 Accuracy

BERT (General-FT) [11] 0.91 0.88 0.89 0.89 0.97 0.90 0.90

LSTM on GloVe (twitter-glove-200) 0.84 0.81 0.82 0.81 0.85 0.83 0.83

BERT+BiLSTM+NeXtVLAD
(Domain-FT) Cfg 1

0.92 0.91 0.92 0.92 0.92 0.92 0.92

BERT+BiLSTM+NeXtVLAD
(Domain-FT) Cfg 2

0.92 0.90 0.91 0.91 0.92 0.91 0.91

BERT (Domain-FT) Cfg 3 0.91 0.92 0.92 0.92 0.91 0.92 0.92

BERT+BiLSTM+NeXtVLAD
(General-FT) Cfg 4

0.90 0.87 0.88 0.87 0.90 0.88 0.88

BERT+BiLSTM+AvgPooling
(Domain-FT) Cfg 5

0.91 0.92 0.91 0.92 0.91 0.91 0.91

BERT+BiLSTM+MaxPooling
(Domain-FT) Cfg 6

0.91 0.91 0.91 0.91 0.91 0.91 0.91

BERT+BiLSTM+NeXtVLAD
(Domain-FT) Cfg 7

0.92 0.91 0.91 0.91 0.92 0.91 0.91

XLNET+BiLSTM+NeXtVLAD
(General-FT) Cfg 8

0.86 0.88 0.87 0.88 0.85 0.87 0.87

RoBERTa (Domain-FT) Cfg 9 0.90 0.94 0.92 0.93 0.89 0.91 0.91

RoBERTa+BiLSTM+NeXtVLAD
(Domain-FT) Cfg 10

0.89 0.94 0.92 0.94 0.88 0.91 0.91

FastText’s Supervised Classifier 0.83 0.81 0.82 0.82 0.83 0.82 0.82

Table 3. Details of our model configurations. The Model column describes the compo-
nents of the architecture. T stands for the Transformer component, Bi for Bidirectional
LSTM, NV for NeXtVLAD, Cl for dense Classification layers, AP for Average Pooling,
and MP for Max Pooling.

Configuration (Accuracy) Model Pre-training Pooling Num. of NeXtVLAD
clusters

Post-BiLSTM
operation

Cfg 1 (0.92) T+Bi+NV+Cl CTBERT-v2 NeXtVLAD 128 Addition

Cfg 2 (0.91) T+Bi+NV+Cl CTBERT-v2 NeXtVLAD 2 Addition

Cfg 3 (0.92) T+Cl CTBERT-v2 — — —

Cfg 4 (0.88) T+Bi+NV+Cl BERTLarge-Cased NeXtVLAD 2 Addition

Cfg 5 (0.91) T+Bi+AP+Cl CTBERT-v2 Avg Pooling — Addition

Cfg 6 (0.91) T+Bi+MP+Cl CTBERT-v2 Max Pooling — Addition

Cfg 7 (0.91) T+Bi+NV+Cl CTBERT-v2 NeXtVLAD 128 Concatenation

Cfg 8 (0.87) T+Bi+NV+Cl XLNETBase-Cased NeXtVLAD 128 Addition

Cfg 9 (0.91) T+Cl BERTweet — — —

Cfg 10 (0.91) T+Bi+NV+Cl BERTweet NeXtVLAD 128 Addition



Automated Identification of Bots Using Deepfake Text Detection 121

shows comparable performance. However, our intention in incorporating BiL-
STM and NeXtVLAD is not to advocate making complex and computation-
ally expensive pipelines without any insights or intuitions and our work on
NeXtVLAD should serve as a report on its comparable performance with other
alternatives. The general applicability, advantages and disadvantages of incor-
porating it to NLP pipelines require further analysis. The performance boost
of CTBERT-v2 [22] encouraged us to also experiment with a pre-trained trans-
former model that is not limited to COVID-19 training data and is pre-trained on
English Tweets. We chose BERTweet (Cfg 9 and 10) – a RoBERTa-based model
– for this experiment. These models reached the best recall for the Human class
and the best precision for the Bot class while they were 1% less accurate com-
pared to CTBERT-v2. We also implemented the LSTM-based approach similar
to [18] (second row in Table 2) to report comparable results on the TweepFake
dataset, and it was way less accurate due to not using a contextualized language
model.

6 Conclusion and Future Directions

We address the problem of detecting bots in social media solely based on their
generated post content. In order to defend against bots, we studied a set of deep
neural network architectures to detect whether a given Tweet is generated by a
human user or a software bot. Our best models have improved the performance in
terms of accuracy and average F1 score by 2% compared to the previously tested
and designed models. The presented NeXtVLAD layer makes our architecture
more resilient against overfitting compared to fully-connected layers and is also
capable of removing LSTM’s bias in favor of latest tokens in text. However,
the general applicability of NeXtVLAD layer to NLP problems needs further
investigation. Our results also reinforced the benefits of using domain-specific
language models as the best option when such a pre-trained model is available
or can be produced. Our approach can be used in real-time applications for
bot-generated text detection as its only cost is a feed-forward pass through the
network. In future, we plan to generate very robust bot detection systems with
improved performance. We need to investigate the effects of adversarial attacks
on deep fake text detection models to make them robust against advanced cyber
bots that may use such hidden noises to bypass the detection systems.

References

1. Abokhodair, N., Yoo, D., McDonald, D.W.: Dissecting a social botnet: growth,
content and influence in Twitter. In: CSCW, pp. 839–851 (2015)

2. Adelani, D.I., Mai, H., Fang, F., Nguyen, H.H., Yamagishi, J., Echizen, I.: Gener-
ating Sentiment-Preserving fake online reviews using neural language models and
their human- and machine-based detection. In: AINA, pp. 1341–1354 (2020)

3. Alothali, E., Zaki, N., Mohamed, E.A., Alashwal, H.: Detecting social bots on
twitter: a literature review. In: IIT, pp. 175–180 (2018)



122 S. M. Saravani et al.

4. Bakhtin, A., Gross, S., Ott, M., Deng, Y., Ranzato, M., Szlam, A.: Real or Fake?
Learning to Discriminate Machine from Human Generated Text. arXiv preprint
arXiv:1906.03351 (2019)

5. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific
text. In: EMNLP-IJCNLP, pp. 3615–3620 (2019)

6. Chavoshi, N., Hamooni, H., Mueen, A.: DeBot: Twitter bot detection via warped
correlation. In: ICDM. pp. 817–822 (2016)

7. Chu, Z., Gianvecchio, S., Wang, H., Jajodia, S.: Detecting automation of twitter
accounts: are you a human, bot, or cyborg? TDSC 9(6), 811–824 (2012)

8. Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., Tesconi, M.: The paradigm-
shift of social spambots: evidence, theories, and tools for the arms race. In: WWW
Companion, pp. 963–972 (2017)

9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

10. Dukić, D., Keča, D., Stipić, D.: Are you human? Detecting bots on Twitter Using
BERT. In: DSAA, pp. 631–636 (2020)

11. Fagni, T., Falchi, F., Gambini, M., Martella, A., Tesconi, M.: TweepFake: about
detecting deepfake tweets. PLoS ONE 16(5), e0251415 (2021)

12. Gayo-Avello, D.: Social media won’t free us. IEEE Internet Comput. 21(4), 98–101
(2017)

13. Gehrmann, S., Strobelt, H., Rush, A.M.: GLTR: statistical detection and visual-
ization of generated text. In: ACL: System Demonstrations, pp. 111–116 (2019)

14. Heidari, M., Jones, J.H.: Using BERT to extract topic-independent sentiment fea-
tures for social media bot detection. In: UEMCON, pp. 0542–0547 (2020)

15. Ippolito, D., Duckworth, D., Callison-Burch, C., Eck, D.: Automatic detection of
generated text is easiest when humans are fooled. In: ACL, pp. 1808–1822 (2020)

16. Jia, J., Wang, B., Gong, N.Z.: Random walk based fake account detection in online
social networks. In: DSN, pp. 273–284 (2017)

17. Karataş, A., Şahin, S.: A review on social bot detection techniques and research
directions. In: ISCTurkey, pp. 156–161 (2017)

18. Kudugunta, S., Ferrara, E.: Deep neural networks for bot detection. Inf. Sci. 467,
312–322 (2018)

19. Lee, H., Yu, Y., Kim, G.: Augmenting data for sarcasm detection with unlabeled
conversation context. In: FigLang, pp. 12–17 (2020)

20. Lin, R., Xiao, J., Fan, J.: NeXtVLAD: an efficient neural network to aggregate
frame-level features for large-scale video classification. In: ECCV, pp. 206–218
(2018)

21. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vis. 60(2), 91–110 (2004)

22. Müller, M., Salathé, M., Kummervold, P.E.: COVID-Twitter-BERT: a natural lan-
guage processing model to Analyse COVID-19 Content on Twitter. arXiv preprint
arXiv:2005.07503 (2020)

23. Rangel, F., Rosso, P.: Overview of the 7th author profiling task at PAN 2019: bots
and gender profiling in Twitter. In: CEUR Workshop, pp. 1–36 (2019)

24. Srivastava, H., Varshney, V., Kumari, S., Srivastava, S.: A novel hierarchical BERT
architecture for Sarcasm detection. In: FigLang, pp. 93–97 (2020)

25. Varol, O., Ferrara, E., Davis, C., Menczer, F., Flammini, A.: Online human-bot
interactions: detection, estimation, and characterization. In: ICWSM, pp. 280–289
(2017)

http://arxiv.org/abs/1906.03351
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2005.07503


Automated Identification of Bots Using Deepfake Text Detection 123

26. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)
27. Wolf, T., et al.: HuggingFace’s transformers: state-of-the-art natural language pro-

cessing. arXiv preprint arXiv:1910.03771 (2019)
28. Zellers, R., et al.: Defending against neural fake news. In: NIPS, pp. 9054–9065

(2019)

http://arxiv.org/abs/1910.03771

	Automated Identification of Social Media Bots Using Deepfake Text Detection
	1 Introduction
	2 NLP for Bot Detection
	2.1 Challenges of NLP for Bot Detection
	2.2 Dataset

	3 Related Work
	4 Methodology
	4.1 BERT
	4.2 BiLSTM
	4.3 VLAD
	4.4 Classifier

	5 Experiments and Results
	6 Conclusion and Future Directions
	References




