Structures of LIG1 active site mutants reveal the importance of DNA end rigidity for mismatch discrimination

Res Sq [Preprint]. 2023 Apr 12:rs.3.rs-2720903. doi: 10.21203/rs.3.rs-2720903/v1.

Abstract

ATP-dependent DNA ligases catalyze phosphodiester bond formation in the conserved three-step chemical reaction of nick sealing. Human DNA ligase I (LIG1) finalizes almost all DNA repair pathways following DNA polymerase-mediated nucleotide insertion. We previously reported that LIG1 discriminates mismatches depending on the architecture of the 3'-terminus at a nick, however the contribution of conserved active site residues to faithful ligation remains unknown. Here, we comprehensively dissect the nick DNA substrate specificity of LIG1 active site mutants carrying Ala(A) and Leu(L) substitutions at Phe(F)635 and Phe(F)F872 residues and show completely abolished ligation of nick DNA substrates with all 12 non-canonical mismatches. LIG1EE/AA structures of F635A and F872A mutants in complex with nick DNA containing A:C and G:T mismatches demonstrate the importance of DNA end rigidity, as well as uncover a shift in a flexible loop near 5'-end of the nick, which causes an increased barrier to adenylate transfer from LIG1 to the 5'-end of the nick. Furthermore, LIG1EE/AA/8oxoG:A structures of both mutants demonstrated that F635 and F872 play critical roles during steps 1 or 2 of the ligation reaction depending on the position of the active site residue near the DNA ends. Overall, our study contributes towards a better understanding of the substrate discrimination mechanism of LIG1 against mutagenic repair intermediates with mismatched or damaged ends and reveals the importance of conserved ligase active site residues to maintain ligation fidelity.

Keywords: DNA ligase I; DNA repair; DNA replication; genome stability; ligation fidelity; mismatch; mutagenic ligation; nick sealing; oxidative DNA damage.

Publication types

  • Preprint