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SUPPLEMENTARY MATERIALS 

This document contains Supplementary Methods (§S1) and Supplementary Results (§S2) for: 

Magnuson, J.S., You, H., Luthra, S., Li, M., Nam, H., Escabí, M., Brown, K., Allopenna, P.D., Theodore, 

R.M., Monto, N., & Rueckl, J.G. (2020). EARSHOT: A minimal neural network model of incremental 

human speech recognition. Cognitive Science, 44, e12823. http://dx.doi.org/10.1111/cogs.12823 

 

S1. SUPPLEMENTARY METHODS 

S1.1 EQUATIONS FOR TRAINING AND TESTING 

Training. We used three techniques to increase learning speed and performance (Vaswani, 

Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, & Polosukhin, 2017): minibatch gradient descent, 

Noam decay, and Adam optimizing. The 8100 words were divided into 5 mini-batches (4 x 2000, 1 x 

100). A baseline learning rate of 0.002 was applied adaptively using Adam optimization and Noam decay 

as in Equation 1. 

 
𝐿𝑅 = 0.002 × 4000).* × 𝑚𝑖𝑛	(𝐸 × 5 × 400023.*, (𝐸 × 5)2).*)   [1] 

 
LR and E denote learning rate and epoch. The hyper parameters ß1, ß2, and 𝜀 for Adam optimization were 

0.9, 0.999, and 1e-08. These values are fairly standard, and the specific values are not crucial for any of 

the results.  

Testing. To quantify the distance of the output vector at each time step to each word in the 1000-

word lexicon, we computed the cosine similarity of the output vector to all 1000 semantic vectors: 

  

𝐶𝑜𝑠𝑖𝑛𝑒	𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 	 (∑ 𝑇B × 𝑂BD
BE3 )/ GH∑ 𝑇BID

BE3 × H∑ 𝑂BID
BE3 J   [2] 

 
T, O, and n indicate the target, output, and vector length, respectively. O indicates the output vector at 

one time step. 
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Simulation method (training and testing). The simulation process was as follows. First, a 10-

ms spectrogram slice I was applied to the input layer at each time step. Hidden activation H of each time 

step was derived through input I. The following formulas (cf. Vaswani et al., 2017) were used for 

calculating H. 

𝑖K = σ(𝐼K𝑊OB + 𝐻K23𝑊RB + 𝑐K23𝑊TB + 𝑏B) [3] 

𝑓K = σ(𝐼K𝑊OW + 𝐻K23𝑊RW + 𝑐K23𝑊TW + 𝑏W  [4] 

𝑐K = 𝑓K𝑐K23 + 𝑖K × tanh(𝐼K𝑊OT + 𝐻K23𝑊RT + 𝑏T) [5] 

𝑜K = σ(𝐼K𝑊O\ + 𝐻K23𝑊R\ + 𝑐K𝑊T\ + 𝑏\) [6] 

𝐻K = tanh(𝑜K) × tanh	(𝑐K) [7] 

In the equations above, i, f, and o denote input, forget, and output LSTM gates, respectively. c is the 

LSTM cell memory, and W is the weight that connects two subscripted nodes. b is the bias of the 

subscripted node. 𝜎 and tanh are activation functions (sigmoid and tanh, respectively). The semantic 

output activation O was derived using the following equation. 

𝑂K = σ(𝐻K𝑊R^ + 𝑏\) [8] 

O was derived for all time steps, and backpropagation was also performed for O at all time steps (and 

preceding steps, as this is backpropagation through time). 

 

S1.2 SELECTIVITY INDICES 

S1.2.1 The phoneme selectivity index (PSI) of hidden units was calculated as follows. First, we 

calculated the absolute value of each hidden unit's activation over time in response to all CV- and VC-

diphones. Then, for each initial phoneme, we averaged each hidden unit's response to all diphones 

beginning with that segment, to derive the mean response of each hidden unit to each phoneme. We 

found that the modal maximal response period across all hidden units in response to all phonemes 

occurred from 0-60 ms after phoneme onset. We thus characterized the response of each hidden unit to 
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each phoneme as the mean response to all diphones beginning with that phoneme over the 0-60 ms time 

period. Then for each phoneme-hidden unit pair, we calculated a PSI value as follows. Phoneme (i) -

hidden unit (j) pair Pij received 1 point for every phoneme to which hidden unit j responded more weakly 

than it did to phoneme i by a threshold (0.15). So, for example, if the activation of hidden unit 207 in 

response to /p/ exceeded its response to /b/ by 0.24, the PSI for P/p/,207 was incremented. The maximum 

PSI was 38, which would indicate that the response of a hidden unit to a particular phoneme exceeded 

the threshold difference for all other phonemes. 

In the study that motivated our use of the PSI (Mesgarani et al., 2014), the Wilcoxon rank sum 

test was used to compare electrode responses to phoneme pairs, with PSIs incremented when the 

difference was significant. However, we used a simple criterion in this study because very small 

differences easily reached significance. The threshold of 0.15 provided a level of sparsity similar to that 

reported in human selectivity indices13. 

To examine structured responses via the PSI, we used simple hierarchical clustering of each 

hidden unit's PSIs for all 39 phonemes (Fig. 4). Any hidden units that had PSIs of 0 for all phonemes 

were excluded. 

S1.2.2 The Feature Selectivity Index (FSI) uses the same method as the PSI, but linked to 

features rather than phonemes. For example, for the FSI to "voiced", all diphones with a voiced segment 

in the first position were used. Our feature definitions are listed in Table S1.1. 
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Table S1.1: Phoneme-feature correspondences.  

 

S1.3 REPRESENTATIONAL SIMILARITY ANALYSIS (RSA) 

To quantify similarity between EARSHOT's hidden unit responses. and ECoG recordings from human 

STG (Mesgarani et al., 2014), we conducted a Representational Similarity Analysis (RSA; Kriegeskorte, 

Mur, & Bandettini, 2008). This procedure is summarized in Fig. S1.1.  

IPA sonorant obstruent voiced nasal syllabic fricative plosive back low front high labial coronal dorsal IPA
d 0 1 1 0 0 0 1 0 0 0 0 0 1 0 d
b 0 1 1 0 0 0 1 0 0 0 0 1 0 0 b
g 0 1 1 0 0 0 1 0 0 0 0 0 0 1 g
p 0 1 0 0 0 0 1 0 0 0 0 1 0 0 p
k 0 1 0 0 0 0 1 0 0 0 0 0 0 1 k
t 0 1 0 0 0 0 1 0 0 0 0 0 1 0 t
ʃ 0 1 0 0 0 1 0 0 0 0 0 0 0 1 ʃ
z 0 1 1 0 0 1 0 0 0 0 0 0 1 0 z
s 0 1 0 0 0 1 0 0 0 0 0 0 1 0 s
f 0 1 0 0 0 1 0 0 0 0 0 1 0 0 f
θ 0 1 0 0 0 1 0 0 0 0 0 0 0 0 θ
ð 0 1 1 0 0 1 0 0 0 0 0 0 0 0 ð
v 0 1 1 0 0 1 0 0 0 0 0 1 0 0 v
w 1 0 1 0 0 0 0 0 0 0 0 0 0 0 w
r 1 1 1 0 0 0 0 0 0 0 0 0 0 0 r
l 1 1 1 0 0 0 0 0 0 0 0 0 0 0 l
j 1 0 1 0 0 0 0 0 0 0 0 0 0 0 j
m 1 1 1 1 0 0 0 0 0 0 0 1 0 0 m
n 1 1 1 1 0 0 0 0 0 0 0 0 1 0 n
ŋ 1 1 1 1 0 0 0 0 0 0 0 0 0 1 ŋ
u 1 0 1 0 1 0 0 1 0 0 1 0 0 0 u
ə 1 0 1 0 1 0 0 0 0 0 0 0 0 0 ə
oʊ 1 0 1 0 1 0 0 0 0 0 0 0 0 0 oʊ
ɔ 1 0 1 0 1 0 0 1 1 0 0 0 0 0 ɔ
aɪ 1 0 1 0 1 0 0 0 0 0 0 0 0 0 aɪ
a 1 0 1 0 1 0 0 1 1 0 0 0 0 0 a
aʊ 1 0 1 0 1 0 0 0 0 0 0 0 0 0 aʊ
æ 1 0 1 0 1 0 0 0 1 1 0 0 0 0 æ
ɛ 1 0 1 0 1 0 0 0 1 1 0 0 0 0 ɛ
eɪ 1 0 1 0 1 0 0 0 0 0 0 0 0 0 eɪ
ɪ 1 0 1 0 1 0 0 0 0 1 1 0 0 0 ɪ
i 1 0 1 0 1 0 0 0 0 1 1 0 0 0 i
ʊ 1 0 1 0 1 0 0 1 0 0 1 0 0 0 ʊ
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Figure S1.1. General schematic of RSA process. The pattern of feature selectivity in EARSHOT’s hidden layer 

can be expressed as a 14 x 512 (feature-by-hidden-unit) matrix of FSI values (top left). From this, we compute a 

14 x 14 (feature by feature) representational dissimilarity matrix (RDM; top right), which compares the pattern of 

selectivity to one feature (across all hidden units) to the pattern of selectivity to another feature. A corresponding 

RDM is computed for the human electrocorticography (ECoG) data (bottom panels). Finally, the two RDMs are 

compared using a Pearson correlation. Permutation tests were used to estimate chance-level correlations. In 

particular, we shuffled the rows of the EARSHOT FSI matrix prior to computing the EARSHOT RDM and then 

computed the correlation with the original ECoG RDM; this procedure was repeated 1 million times, yielding a 

distribution of permutation values that would be expected by chance. 

 

Analyses were limited to the set of 14 articulatory features (e.g., voiced, fricative, labial) used by 

Mesgarani et al. (2014). Dissimilarity matrices were computed using cosine similarity. Results (Fig. 5 

in the main text) indicated that the pattern of feature selectivity in EARSHOT strongly resembled the 

pattern of selectivity in human ECoG, and the correlation was significantly above what would be 

expected by chance, r = 0.895, p < 1×10-6 (as established by a permutation test, where we randomized 
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one RDM before calculating the correlation 1 million permutations times). An analogous assessment of 

RDMs based on PSI matrices (Fig. 5 in the main text, panel A) yielded similar results, with a strong 

correlation between EARSHOT and human neural data, r = 0.607, p < 1×10-6.  

To understand which sub-phonemic details might be represented in EARSHOT and by humans, 

we might consider how much degree of similarity between phonemes is predictable from how much they 

overlap in terms of features. In examining the PSI RDMs (Fig. 5, panel B), one observes, for instance, 

that the patterns for /p/ and /t/ are quite similar, and, on classic binary acoustic-phonetic features, these 

two sounds differ only in their place of articulation (/p/ is labial, /t/ is alveolar). By contrast, the patterns 

for /p/ and /n/ are relatively dissimilar. They have the same place dissimilarity as /p/ and /t/ (labial vs 

alveolar), but also differ in manner of articulation (plosive vs nasal), and voicing (voiceless vs voiced). 

Thus, we can establish a baseline similarity of the EARSHOT and STG RDMs to an RDM based on the 

features associated with each phoneme (Fig. 5, panel C). The robust correlations between the EARSHOT 

and STG PSIs to the phoneme-feature RDM further suggest that both are sensitive to phonetic properties 

in the speech signal (rather than other acoustic information at a finer or coarser grain). In Fig. S1.2, we 

present the distributions of correlations observed in the permutation tests along with the actual 

correlations for unscrambled RDMs. 
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Figure S1.2. Permutation test results for RDM comparisons. In each case, one of the two RDMs being compared 

was shuffled randomly 1,000,000 times, and the correlation was computed each time. Red indicates the 

distribution of observed correlations. The line and value in each plot indicate the correlation for unshuffled RDMs.  
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S1.4 REPLICABILITY 

Replicability was confirmed by repeating the complete training of 10 models three times; only minor 

variations were observed between iterations. 

 

S1.5 HARDWARE AND SOFTWARE 

Simulations were conducted on a Windows 10 workstation with an i7-6700k CPU, 64-gb of RAM, and 

a Titan-X (12-gb) graphics card. Simulations were implemented using Python 3.6 and TensorFlow 1.7. 

Each model requires approximately 10 hours to train on this workstation. The EARSHOT github 

repository (https://github.com/maglab-uconn/EARSHOT) provides an up-to-date Linux container with 

all necessary software and libraries for running our simulation code and analyses. However, conducting 

simulations will still require a high-performance workstation. 

 

S1.6 ALTERNATIVE MODELS 

In developing this model, we explored dozens of combinations of candidate architectures and inputs. All 

were limited to two layers (inputs-to-hidden and hidden-to-output). For architectures, we varied three 

aspects of models: number of hidden units (which we typically varied from 100 to 1000 nodes before 

rejecting an architecture for accuracy below 90%), hidden unit type (standard integrative nodes vs. 

LSTMs), and degree of recurrence (full recurrence, as in the model reported here, vs. single-step 

recurrence, as in simple recurrent networks; Elman, 1990). For inputs, we tried spectrograms at various 

resolutions, Mel Frequency Cepstral Coefficients (MFCCs), and cochleagrams. 

Most combinations failed to achieve high accuracy. The only combinations that achieved greater 

than 90% accuracy were those reported here for EARSHOT (though similar results can be obtained with 

somewhat fewer hidden units) and a similar model using low-dimensional MFCCs rather than 

spectrographic inputs. However, the latter failed to show realistic timecourse (see Fig. S1.3).  
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Fig. S1.3. Unrealistic timecourse in a high-accuracy model. This example illustrates that the correct 

timecourse does not necessarily emerge from any model with high accuracy. For this model, we used 13-element 

Mel Frequency Cepstral Coefficients (MFCCs, a common transformation used in ASR) as inputs to 500 LSTM 

nodes that mapped onto 300 semantic outputs. The model achieved 95% accuracy on a 200-word lexicon 

produced by 10 talkers. Here, we tracked mean squared error (MSE) to each pattern (note that the MSE scale is 

reversed to facilitate comparison to Fig. 2 in the main text), and a radically unrealistic timecourse (compared to 

human behavior; see Fig. 2 in the main text) emerged. 

 

S2. SUPPLEMENTARY RESULTS 

In this section, we present four figures that augment results presented in the primary article. In Fig. S2.1, 

we show the progression of training accuracy for all ten models that were trained. In Fig. S2.2, we show 

over-time activations of all 512 hidden units in response to phonemes, and their responses to features in 

Fig. S2.3. In Fig. S2.4, we show responses to phonemes and features by representative hidden units to 

illustrate how many units appear more sensitive to a phonemic rather than featural grain. 
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Fig. S2.1. Accuracy over epochs organized by talkers. In each panel, "Trained" indicates the 

performance on the listed talker (e.g., "KATHY") in the 9 simulations where it was included. 

"Excluded words" indicates performance on the listed talker's 100 excluded words in the 9 models 
that included that talker in training. The "Excluded talker" lines track performance on the listed talker 

when it was excluded. Training for each model was conducted for 8000 epochs with 100 words per 

training talker excluded and one talker excluded completely. For epochs 8001-10,000, excluded 

items were introduced to the training set. As can be seen from the figure, even for talkers for which 

generalization was initially poor, training allowed rapid improvement. 
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Fig. S2.2. Activations over time of all hidden units to each phoneme. Each panel displays one 

unit's response to each phoneme (y-axis, with the same ordering as Fig. 4 in the main article) over 

a period of 350ms. Units are ordered according to similarity in response profiles. 
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Fig. S2.3. Activations over time of all hidden units to features. Each panel displays one unit's 

response to each feature over a period of 350ms. Units are ordered according to similarity in 

phoneme response profiles (i.e., the same order as in Fig. S3). To see the order of features, see 
Fig. S5. 
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Fig. S2.4. Examples illustrating the tendency for greater selectivity to phonemes than 
features. Responses of units 96-119 to phonemes (rows 1, 3, and 5) and features (rows 2, 4, and 
6). A moderate tendency for sharper, more selective responses to phonemes than features is 

apparent. 

 


