Skip to main content
Log in

Lateral retention of water droplets on solid surfaces without gravitational effect

  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Gravity is commonly considered negligible when the surface tension is dominant; i.e., the Bond number is less than 1. In this paper, however, the authors present a technique in which drops slide over surfaces with zero effective gravity. Our study compared the sliding motion of water drops on hydrophilic and hydrophobic surfaces in scenarios: one in which effective gravity = 1 (1 g) and one in which it = 0 (0 g). The authors found that the lateral retention force was greater under 1 g than it was under 0 g. Also, the results showed that retention forces calculated by Furmidge equation are higher than the measured forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. Y. Schaerli, R.C. Wootton, T. Robinson, V. Stein, C. Dunsby, M.A.A. Neil, P.M.W. French, A.J. DeMello, C. Abell, and F. Hollfelder: Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Anal. Chem. 81, 302–306 (2009).

    Article  CAS  Google Scholar 

  2. B. Teste, A. Ali-Cherif, J.L. Viovy, and L. Malaquin: A low cost and high throughput magnetic bead-based immuno-agglutination assay in confined droplets. Lab. Chip 13, 2344–2349 (2013).

    Article  CAS  Google Scholar 

  3. X. Casadevall i Solvas and A. DeMello: Droplet microfluidics: recent developments and future applications. Chem. Commun. 47, 1936–1942 (2011).

    Article  CAS  Google Scholar 

  4. D. Bogojevic, M.D. Chamberlain, I. Barbulovic-Nad, and A.R. Wheeler: A digital microfluidic method for multiplexed cell-based apoptosis assays. Lab. Chip 12, 627–634 (2012).

    Article  CAS  Google Scholar 

  5. S. Cho, D.-K. Kang, S. Sim, F. Geier, J.-Y. Kim, X. Niu, J.B. Edel, S.-I. Chang, R.C.R. Wootton, K.S. Elvira, and A.J. DeMello: Droplet-based microfluidic platform for high-throughput, multi-parameter screening of photosensitizer activity. Anal. Chem. 85, 8866–8872 (2013).

    Article  CAS  Google Scholar 

  6. D. Brutin, B. Sobac, B. Loquet, and J. Sampol: Pattern formation in drying drops of blood. J. Fluid Mech. 667, 85–95 (2011).

    Article  CAS  Google Scholar 

  7. J.A. Lim, W.H. Lee, H.S. Lee, J.H. Lee, Y.D. Park, and K. Cho: Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet. Adv. Funct. Mater. 18, 229–234 (2008).

    Article  CAS  Google Scholar 

  8. R.F. Allen, and P.R. Benson: Rolling drops on an inclined plane. J. Colloid Interface Sci. 50, 250–253 (1975).

    Article  Google Scholar 

  9. M. Sakai, J.-H. Song, N. Yoshida, S. Suzuki, Y. Kameshima, and A. Nakajima: Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces. Langmuir 22, 4906–4909 (2006).

    Article  CAS  Google Scholar 

  10. M. Sakai, A. Hashimoto, N. Yoshida, S. Suzuki, Y. Kameshima, and A. Nakajima: Image analysis system for evaluating sliding behavior of a liquid droplet on a hydrophobic surface. Rev. Sci. Instrum. 78, 045103 (2007).

    Article  Google Scholar 

  11. S. Suzuki, A. Nakajima, M. Sakai, Y. Sakurada, N. Yoshida, A. Hashimoto, Y. Kameshima, and K. Okada: Slipping and rolling ratio of sliding acceleration for a water droplet sliding on fluoroalkylsilane coatings of different roughness. Chem. Lett. 37, 58–59 (2008).

    Article  CAS  Google Scholar 

  12. M. Sakai, J.-H. Song, N. Yoshida, S. Suzuki, Y. Kameshima, and A. Nakajima: Relationship between sliding acceleration of water droplets and dynamic contact angles on hydrophobic surfaces. Surf. Sci. 600, L204–L208 (2006).

    Article  CAS  Google Scholar 

  13. H. Ren, S. Xu, and S.T. Wu: Effects of gravity on the shape of liquid droplets. Opt. Commun. 283, 3255–3258 (2010).

    Article  CAS  Google Scholar 

  14. S. Vafaei and M.Z. Podowski: Analysis of the relationship between liquid droplet size and contact angle. Adv. Colloid Interface Sci. 113, 133–146 (2005).

    Article  CAS  Google Scholar 

  15. L.-J. Yang, T.-J. Yao, and Y.-C. Tai: The marching velocity of the capillary meniscus in a microchannel. J. Micromech. Microeng. 14, 220–225 (2004).

    Article  Google Scholar 

  16. W.H. Hager: Wilfrid Noel Bond and the Bond number. J. Hydraul. Res. 50, 3–9 (2012).

    Article  Google Scholar 

  17. V.A. Lubarda and K.A. Talke: Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model. Langmuir 27, 10705–10713 (2011).

    Article  CAS  Google Scholar 

  18. D.H. Shin, S.H. Lee, J.-Y. Jung, and J.Y. Yoo: Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces. Microelectron. Eng. 86, 1350–1353 (2009).

    Article  CAS  Google Scholar 

  19. S. Ravi Annapragada, J.Y. Murthy, and S. V. Garimella: Droplet retention on an incline. Int. J. Heat Mass Transf. 55 (5–6), 1457–1465 (2012).

    Article  CAS  Google Scholar 

  20. S. Tang, Y. Bhimavarapu, S. Gulec, R. Das, J. Liu, H. N'Guessan, T. Whitehead, C.W. Yao, and R. Tadmor: Droplets sliding down a vertical surface under increasing horizontal forces. Langmuir 35, 8191–8198 (2019).

    CAS  Google Scholar 

  21. C.-W. Yao, S. Tang, D. Sebastian, and R. Tadmor: Sliding of water droplets on micropillar-structured superhydrophobic surfaces. Appl. Surf. Sci. 144493 (2019). doi:10.1016/j.apsusc.2019.144493.

    Google Scholar 

  22. D. Quéré, M.-J. Azzopardi, and L. Delattre: Drops at rest on a tilted plane. Langmuir 14, 2213–2216 (1998).

    Article  Google Scholar 

  23. G. Pu, J. Ai, and S.J. Severtson: Drop behavior on a thermally-stripped acrylic polymer: influence of surface tension induced wetting ridge formation on retention and running. Langmuir 26, 12696–12702 (2010).

    Article  CAS  Google Scholar 

  24. S. Daniel, M.K. Chaudhury, and J.C. Chen: Fast drop movements resulting from the phase change on a gradient surface. Science 291, 633–636 (2001).

    Article  CAS  Google Scholar 

  25. Y. Zheng, H. Bai, Z. Huang, X. Tian, F.Q. Nie, Y. Zhao, J. Zhai, and L. Jiang: Directional water collection on wetted spider silk. Nature 463, 640–643 (2010).

    Article  CAS  Google Scholar 

  26. W. Wang, J.V.I. Timonen, A. Carlson, D.M. Drotlef, C.T. Zhang, S. Kolle, A. Grinthal, T.S. Wong, B. Hatton, S.H. Kang, S. Kennedy, J. Chi, R.T. Blough, M. Sitti, L. Mahadevan, and J. Aizenberg: Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature 559, 77–82 (2018).

    Article  CAS  Google Scholar 

  27. R. Tadmor, A. Baksi, S. Gulec, S. Jadhav, H.E. N'guessan, V. Somasi, M. Tadmor, S. Tang, P. Wasnik, and S. Yadav: Defying gravity: Drops that climb up a vertical wall of their own accord. J. Colloid Interface Sci. 562, 608–613 (2020).

    Article  CAS  Google Scholar 

  28. S. Basu, K. Nandakumar, and J.H. Masliyah: A model for detachment of a partially wetting drop from a solid surface by shear flow. J. Colloid Interface Sci. 190, 253–257 (1997).

    Article  CAS  Google Scholar 

  29. H. Sakai and T. Fujii: The dependence of the apparent contact angles on gravity. J. Colloid Interface Sci. 210, 152–156 (1999).

    Article  CAS  Google Scholar 

  30. R. Tadmor, P. Bahadur, A. Leh, H.E. N'Guessan, R. Jaini, and L. Dang: Measurement of lateral adhesion forces at the interface between a liquid drop and a substrate. Phys. Rev. Lett. 103, 266101 (2009).

    Article  Google Scholar 

  31. P.S. Wasnik, H.E. N'guessan, and R. Tadmor: Controlling arbitrary humidity without convection. J. Colloid Interface Sci. 455, 212–219 (2015).

    Article  CAS  Google Scholar 

  32. C.G.L. Furmidge: Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. J. Colloid Sci. 17, 309–324 (1962).

    Article  CAS  Google Scholar 

  33. S. Varagnolo, D. Ferraro, P. Fantinel, M. Pierno, G. Mistura, G. Amati, L. Biferale, and M. Sbragaglia: Stick-slip sliding of water drops on chemically heterogeneous surfaces. Phys. Rev. Lett. 111, 066101 (2013).

    Article  CAS  Google Scholar 

  34. N. Gao, F. Geyer, D.W. Pilat, S. Wooh, D. Vollmer, H.J. Butt, and R. Berger: How drops start sliding over solid surfaces. Nat. Phys. 14, 191–196 (2018).

    Article  CAS  Google Scholar 

  35. E.B. Dussan V and R.T.P. Chow: On the ability of drops or bubbles to stick to non horizontal surfaces of solids. J. Fluid Mech. 137, 1–29 (1983).

    Article  CAS  Google Scholar 

  36. C.W. Extrand and A.N. Gent: Retention of liquid drops by solid surfaces. J. Colloid Interface Sci. 138, 431–442 (1990).

    Article  CAS  Google Scholar 

  37. R.A. Brown, F.M. Orr, and L.E. Scriven: Static drop on an inclined plate: Analysis by the finite element method. J. Colloid Interface Sci. 73, 76–87 (1980).

    Article  CAS  Google Scholar 

  38. A.I. ElSherbini and A.M. Jacobi: Retention forces and contact angles for critical liquid drops on non-horizontal surfaces. J. Colloid Interface Sci. 299, 841–849 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Center for Midstream Management and Science (CMMS) of Lamar University. The authors also appreciate the Center for Innovation, Commercialization and Entrepreneurship (CICE) at Lamar University for providing lab space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Wei Yao.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2020.40.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Yao, CW., Tadmor, R. et al. Lateral retention of water droplets on solid surfaces without gravitational effect. MRS Communications 10, 449–454 (2020). https://doi.org/10.1557/mrc.2020.40

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2020.40

Navigation