Skip to main content
Log in

Properties of nuclear pastas

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In this review we study the nuclear pastas as they are expected to be formed in neutron star crusts. We start with a study of the pastas formed in nuclear matter (composed of protons and neutrons), we follow with the role of the electron gas on the formation of pastas, and we then investigate the pastas in neutron star matter (nuclear matter embedded in an electron gas).

Nuclear matter (NM) at intermediate temperatures (1 MeV ≲ T ≲ 15 MeV), at saturation and sub-saturation densities, and with proton content ranging from 30% to 50% was found to have liquid, gaseous and liquid-gas mixed phases. The isospin-dependent phase diagram was obtained along with the critical points, and the symmetry energy was calculated and compared to experimental data and other theories. At low temperatures (T ≲ 1 MeV) NM produces crystal-like structures around saturation densities, and pasta-like structures at sub-saturation densities. Properties of the pasta structures were studied with cluster-recognition algorithms, caloric curve, the radial distribution function, the Lindemann coefficient, Kolmogorov statistics, Minkowski functionals; the symmetry energy of the pasta showed a connection with its morphology.

Neutron star matter (NSM) is nuclear matter embedded in an electron gas. The electron gas is included in the calculation by the inclusion of an screened Coulomb potential. To connect the NM pastas with those in neutron star matter (NSM), the role the strength and screening length of the Coulomb interaction have on the formation of the pastas in NM was investigated. Pasta was found to exist even without the presence of the electron gas, but the effect of the Coulomb interaction is to form more defined pasta structures, among other effects. Likewise, it was determined that there is a minimal screening length for the developed structures to be independent of the cell size.

Neutron star matter was found to have similar phases as NM, phase transitions, symmetry energy, structure function and thermal conductivity. Like in NM, pasta forms at around T ≈ 1.5 MeV, and liquid-to-solid phase changes were detected at T ≈ 0.5 MeV. The structure function and the symmetry energy were also found to depend on the pasta structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and notes

  1. D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Structure of matter below nuclear saturation density, Phys. Rev. Lett. 50(26), 2066 (1983)

    ADS  Google Scholar 

  2. K. Oyamatsu, Nuclear shapes in the inner crust of a neutron star, Nucl. Phys. A 561(3), 431 (1993)

    ADS  Google Scholar 

  3. T. Maruyama, K. Niita, K. Oyamatsu, T. Maruyama, S. Chiba, and A. Iwamoto, Quantum molecular dynamics approach to the nuclear matter below the saturation density, Phys. Rev. C 57(2), 655 (1998)

    ADS  Google Scholar 

  4. C. P. Lorenz, D. G. Ravenhall, and C. J. Pethick, Neutron star crusts, Phys. Rev. Lett. 70(4), 379 (1993)

    ADS  Google Scholar 

  5. K. S. Cheng, C. C. Yao, and Z. G. Dai, Properties of nuclei in the inner crusts of neutron stars in the relativistic mean-field theory, Phys. Rev. C 55(4), 2092 (1997)

    ADS  Google Scholar 

  6. T. Kido, T. Maruyama, K. Niita, and S. Chiba, MD simulation study for nuclear matter, Nucl. Phys. A 663–664, 877c (2000)

    ADS  Google Scholar 

  7. G. Watanabe, K. Iida, and K. Sato, Thermodynamic properties of nuclear “pasta” in neutron star crusts, Nucl. Phys. A 676(1–4), 455 (2000)

    ADS  Google Scholar 

  8. R. D. Williams and S. E. Koonin, Sub-saturation phases of nuclear matter, Nucl. Phys. A 435(3–4), 844 (1985)

    ADS  Google Scholar 

  9. M. Hashimoto, H. Seki, and M. Yamada, Shape of Nuclei in the Crust of Neutron Star, Prog. Theor. Phys. 71(2), 320 (1984)

    ADS  Google Scholar 

  10. P. N. Alcain and C. O. Dorso, The neutrino opacity of neutron rich matter, Nucl. Phys. A 961, 183 (2017)

    ADS  Google Scholar 

  11. D. Page, J. M. Lattimer, M. Prakash and A. W. Steiner, Minimal Cooling of Neutron Stars: A New Paradigm, Astrophys. J. Suppl. 155, 623 (2004)

    ADS  Google Scholar 

  12. B. Schuetrumpf, G. Martínez-Pinedo, M. Afibuzzaman, and H. M. Aktulga, Survey of nuclear pasta in the intermediate-density regime: Shapes and energies, Phys. Rev. C 100(4), 045806 (2019)

    ADS  Google Scholar 

  13. B. Schuetrumpf, G. Martínez-Pinedo, and P. G. Reinhard, Survey of nuclear pasta in the intermediate-density regime: Structure functions for neutrino scattering, Phys. Rev. C 101(5), 055804 (2020)

    ADS  Google Scholar 

  14. G. Watanabe, K. Sato, K. Yasuoka, and T. Ebisuzaki, Microscopic study of slablike and rodlike nuclei: Quantum molecular dynamics approach, Phys. Rev. C 66(1), 012801 (2002)

    ADS  Google Scholar 

  15. C. J. Horowitz, M. A. Perez-García, and J. Piekarewicz, Neutrino-“pasta” scattering: The opacity of nonuniform neutron-rich matter, Phys. Rev. C 69(4), 045804 (2004)

    ADS  Google Scholar 

  16. B. Schuetrumpf and W. Nazarewicz, Twist-averaged boundary conditions for nuclear pasta Hartree-Fock calculations, Phys. Rev. C 92(4), 045806 (2015)

    ADS  Google Scholar 

  17. F. J. Fattoyev, C. J. Horowitz, and B. Schuetrumpf, Quantum nuclear pasta and nuclear symmetry energy, Phys. Rev. C 95(5), 055804 (2017)

    ADS  Google Scholar 

  18. C. O. Dorso, P. A. Giménez Molinelli, and J. A. López, in: “Neutron Star Crust”, Eds. C. A. Bertulani and J. Piekarewicz, Nova Science Publishers, ISBN 978-1620819029 (2012)

  19. P. N. Alcain, P. A. Giménez Molinelli, and C. O. Dorso, Beyond nuclear “pasta”: Phase transitions and neutrino opacity of new “pasta” phases, Phys. Rev. C 90(6), 065803 (2014)

    ADS  Google Scholar 

  20. C. J. Horowitz, M. A. Pérez-García, J. Carriere, D. K. Berry, and J. Piekarewicz, Nonuniform neutron-rich matter and coherent neutrino scattering, Phys. Rev. C 70(6), 065806 (2004)

    ADS  Google Scholar 

  21. C. O. Dorso, P. A. Giménez Molinelli, and J. A. López, Topological characterization of neutron star crusts, Phys. Rev. C 86(5), 055805 (2012)

    ADS  Google Scholar 

  22. I. Tanihata, Preprint RIKEN-AF-NP-229, 1996; P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction, Phys. Rev. C 82(5), 054319 (2010)

    Google Scholar 

  23. M. Dutra, O. Lourenço, J. S. Sá Martins, A. Delfino, J. R. Stone, and P. D. Stevenson, Skyrme interaction and nuclear matter constraints, Phys. Rev. C 85(3), 035201 (2012)

    ADS  Google Scholar 

  24. S. Kumar and Y. G. Ma, Investigation of compressibilities using neutron-rich projectile s fragmentation at intermediate energy, Nucl. Phys. A 898, 59 (2013)

    ADS  Google Scholar 

  25. P. Danielewicz, R. Lacey, and W. G. Lynch, Determination of the equation of state of dense matter, Science 298(5598), 1592 (2002)

    ADS  Google Scholar 

  26. W. D. Myers and W. J. Swiatecki, The nuclear Thomas-Fermi model, Acta Phys. Pol. B 26, 111 (1995)

    Google Scholar 

  27. A. Barrañón, J. Escamilla Roa, and J. A. López, Entropy in the nuclear caloric curve, Phys. Rev. C 69(1), 014601 (2004)

    ADS  Google Scholar 

  28. P. J. Siemens, Liquid-gas phase transition in nuclear matter, Nature 305(5933), 410 (1983)

    ADS  Google Scholar 

  29. P. J. Siemens, Macroscopic behaviour of nuclear matter, Nature 336(6195), 110 (1988)

    ADS  Google Scholar 

  30. J. A. López and C. O. Dorso, Lecture Notes on Phase Transitions in Nuclear Matter, World Scientific, 2000

  31. H. Müller and B. Serot, Phase transitions in warm, asymmetric nuclear matter, Phys. Rev. C 52(4), 2072 (1995)

    ADS  Google Scholar 

  32. J. A. López, A. Gaytán Terrazas, and S. Terrazas Porras, Isospin-dependent phase diagram of nuclear matter, Nucl. Phys. A 994, 121664 (2020)

    Google Scholar 

  33. See, e.g., https://www.ks.uiuc.edu/Research/vmd/current/ug/node73.html, retrieved Sep. 2, 2019

  34. J. A. López, E. Ramírez-Homs, R. González, and R. Ravelo, Isospin-asymmetric nuclear matter, Phys. Rev. C 89(2), 024611 (2014)

    ADS  Google Scholar 

  35. J. A. López and S. Terrazas Porras, Symmetry energy in the liquid-gas mixture, Nucl. Phys. A 957, 312 (2017)

    ADS  Google Scholar 

  36. K. Hagel, J. B. Natowitz, and G. Röpke, The equation of state and symmetry energy of low-density nuclear matter, Eur. Phys. J. A 50(2), 39 (2014)

    ADS  Google Scholar 

  37. S. Kowalski, J. B. Natowitz, S. Shlomo, R. Wada, K. Hagel, J. Wang, T. Materna, Z. Chen, Y. G. Ma, L. Qin, A. S. Botvina, D. Fabris, M. Lunardon, S. Moretto, G. Nebbia, S. Pesente, V. Rizzi, G. Viesti, M. Cinausero, G. Prete, T. Keutgen, Y. E. Masri, Z. Majka, and A. Ono, Experimental determination of the symmetry energy of a low density nuclear gas, Phys. Rev. C 75(1), 014601 (2007)

    ADS  Google Scholar 

  38. R. Wada, K. Hagel, L. Qin, J. B. Natowitz, Y. G. Ma, G. Röpke, S. Shlomo, A. Bonasera, S. Typel, Z. Chen, M. Huang, J. Wang, H. Zheng, S. Kowalski, C. Bottosso, M. Barbui, M. R. D. Rodrigues, K. Schmidt, D. Fabris, M. Lunardon, S. Moretto, G. Nebbia, S. Pesente, V. Rizzi, G. Viesti, M. Cinausero, G. Prete, T. Keutgen, Y. El Masri, and Z. Majka, Nuclear matter symmetry energy at 0.03 ≤ ρ/ρ0 ≤ 0.2, Phys. Rev. C 85(6), 064618 (2012)

    ADS  Google Scholar 

  39. L. W. Chen, C. M. Ko, and B. A. Li, Isospin-dependent properties of asymmetric nuclear matter in relativistic mean field models, Phys. Rev. C 76(5), 054316 (2007)

    ADS  Google Scholar 

  40. E. L. Medeiros and J. Randrup, Thermostatic properties of Seyler-Blanchard nuclei, Phys. Rev. C 45(1), 372 (1992)

    ADS  Google Scholar 

  41. C. J. Horowitz and A. Schwenk, Cluster formation and the virial equation of state of low-density nuclear matter, Nucl. Phys. A 776(1–2), 55 (2006)

    ADS  Google Scholar 

  42. J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Temperature effects on the nuclear symmetry energy and symmetry free energy with an isospin and momentum dependent interaction, Phys. Rev. C 75(1), 014607 (2007)

    ADS  Google Scholar 

  43. P. A. Giménez Molinelli, J. I. Nichols, J. A. López, and C. O. Dorso, Simulations of cold nuclear matter at subsaturation densities, Nucl. Phys. A 923, 31 (2014)

    ADS  Google Scholar 

  44. A. Vicentini, G. Jacucci, and V. R. Pandharipande, Fragmentation of hot classical drops, Phys. Rev. C 31(5), 1783 (1985)

    ADS  Google Scholar 

  45. R. J. Lenk and V. R. Pandharipande, Disassembly of hot classical charged drops, Phys. Rev. C 34(1), 177 (1986)

    ADS  Google Scholar 

  46. R. J. Lenk, T. J. Schlagel, and V. R. Pandharipande, Accuracy of the Vlasov-Nordheim approximation in the classical limit, Phys. Rev. C 42(1), 372 (1990)

    ADS  Google Scholar 

  47. G. Raciti, R. Bassini, M. Begemann-Blaich, S. Fritz, S. J. Gaff, N. Giudice, C. Gross, G. Immé, I. Iori, U. Kleinevoss, G. J. Kunde, W. D. Kunze, U. Lynen, M. Mahi, T. Möhlenkamp, W. F. J. Müller, B. Ocker, T. Odeh, J. Pochodzalla, G. Riccobene, F. P. Romano, A. Sajia, M. Schnittker, A. Schüttauf, C. Schwarz, W. Seidel, V. Serfling, C. Sfienti, W. Trautmann, A. Trzcinski, G. Verde, A. Wörner, H. Xi, and B. Zwieglinski, A systematic study of the nuclear caloric curve, Nuovo Cim. 111(8–9), 987 (1998)

    ADS  Google Scholar 

  48. H. Sonoda, G. Watanabe, K. Sato, K. Yasuoka, and T. Ebisuzaki, Phase diagram of nuclear “pasta” and its uncertainties in supernova cores, Phys. Rev. C 77(3), 035806 (2008)

    ADS  Google Scholar 

  49. C. O. Dorso, G. Frank, and J. A. López, Phase transitions and symmetry energy in nuclear pasta, Nucl. Phys. A 978, 35 (2018)

    ADS  Google Scholar 

  50. C. J. Horowitz, Links between heavy ion and astrophysics, Eur. Phys. J. A 30(1), 303 (2006)

    ADS  MathSciNet  Google Scholar 

  51. G. Watanabe and K. Iida, Electron screening in the liquid-gas mixed phases of nuclear matter, Phys. Rev. C 68(4), 045801 (2003)

    ADS  Google Scholar 

  52. T. Maruyama, T. Tatsumi, D. N. Voskresensky, T. Tanigawa, and S. Chiba, Nuclear “pasta” structures and the charge screening effect, Phys. Rev. C 72(1), 015802 (2005)

    ADS  Google Scholar 

  53. C. J. Horowitz, M. A. Perez-Garcia, D. K. Berry, and J. Piekarewicz, Dynamical response of the nuclear “pasta” in neutron star crusts, Phys. Rev. C 72(3), 035801 (2005)

    ADS  Google Scholar 

  54. J. Piekarewicz and G. T. Sánchez, Proton fraction in the inner neutron-star crust, Phys. Rev. C 85(1), 015807 (2012)

    ADS  Google Scholar 

  55. J.A. López and E. Ramírez-Homs, Effect of an electron gas on a neutron-rich nuclear pasta, Nuc. Sci. Tech. 26, S20502 (2015)

    Google Scholar 

  56. A. S. Schneider, C. J. Horowitz, J. Hughto, and D. K. Berry, Nuclear “pasta” formation, Phys. Rev. C 88(6), 065807 (2013)

    ADS  Google Scholar 

  57. K. Binder, B. J. Block, P. Virnau, and A. Tröster, Beyond the van der Waals loop: What can be learned from simulating Lennard-Jones fluids inside the region of phase coexistence, Am. J. Phys. 80(12), 1099 (2012)

    ADS  Google Scholar 

  58. C. J. Horowitz, D. K. Berry, C. M. Briggs, M. E. Caplan, A. Cumming, and A. S. Schneider, Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars, Phys. Rev. Lett. 114(3), 031102 (2015)

    ADS  Google Scholar 

  59. C. Dorso, G. Frank, and J. A. López, Symmetry energy in neutron star matter, Nucl. Phys. A 984, 77 (2019)

    ADS  Google Scholar 

  60. J. A. López, J. A. Muñoz, C. O. Dorso, and G. Frank, Machine learning Minkoswki functionals of neutron star crusts, J. Phys. Conf. Ser. (2019)

  61. J. A. López and J. A. Muñoz, Analytical expression and neural network study of the symmetry energy, CERN Proc. 1, 29 (2019)

    Google Scholar 

  62. P. N. Alcain, Dependencia en el isospín de la ecuación de estado de la materia nuclear, Ph.D. Thesis, Universidad de Buenos Aires, 2019

  63. D. Frenkel y B. Smit, Understanding Molecular Simulations, 2nd Ed., Academic Press, 2002

  64. A. Deibel, A. Cumming, E. F. Brown, and S. Reddy, Latetime cooling of neutron star transients and the physics of the inner crust, Astrophys. J. 839(2), 95 (2017)

    ADS  Google Scholar 

  65. E. F. Brown, A. Cumming, F. J. Fattoyev, C. J. Horowitz, D. Page, and S. Reddy, Rapid neutrino cooling in the neutron star MXB 1659-29, Phys. Rev. Lett. 120(18), 182701 (2018)

    ADS  Google Scholar 

  66. A. S. Schneider, D. K. Berry, M. E. Caplan, C. J. Horowitz, and Z. Lin, Effect of topological defects on “nuclear pasta” observables, Phys. Rev. C 93(6), 065806 (2016)

    ADS  Google Scholar 

  67. R. Nandi and S. Schramm, Transport properties of the nuclear pasta phase with quantum molecular dynamics, Astrophys. J. 852(2), 135 (2018)

    ADS  Google Scholar 

  68. C. J. Horowitz, and D. K. Berry, Shear viscosity and thermal conductivity of nuclear “pasta”, Phys. Rev. C 78(3), 035806 (2008)

    ADS  Google Scholar 

  69. J. M. Dunn, Nanoscale phonon thermal conductivity via molecular dynamics, Ph.D. Thesis, Purdue University, 2016

  70. F. Müller-Plathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity, J. Chem. Phys. 106(14), 6082 (1997)

    ADS  Google Scholar 

  71. A. Barrañón, C. O. Dorso, J. A. López, and J. Morales, LATINO: A semi-classical model to study nuclear fragmentation, Rev. Mex. Fis. 45(suppl. 2), 110 (1999)

    Google Scholar 

  72. A. Chernomoretz, L. Gingras, Y. Larochelle, L. Beaulieu, R. Roy, C. St-Pierre, and C. O. Dorso, Quasiclassical model of intermediate velocity particle production in asymmetric heavy ion reactions, Phys. Rev. C 65(5), 054613 (2002)

    ADS  Google Scholar 

  73. A. Barrañón, C. O. Dorso, and J. A. López, Searching for criticality in nuclear fragmentation, Rev. Mex. Fís. 47(sup. 2), 93 (2001)

    Google Scholar 

  74. A. Barrañón, C. O. Dorso, and J. A. López, Time dependence of isotopic temperatures, Nucl. Phys. A 791(1–2), 222 (2007)

    ADS  Google Scholar 

  75. A. Barrañón, R. Cárdenas, C. O. Dorso, and J.A. López, The critical exponent of nuclear fragmentation, Acta Physica Hungarica A: Heavy Ion Phys. 17(1), 59 (2003)

    ADS  Google Scholar 

  76. C. O. Dorso and J. A. López, Selection of critical events in nuclear fragmentation, Phys. Rev. C 64(2), 027602 (2001)

    ADS  Google Scholar 

  77. A. Barrañón, J. Escamilla Roa, and J. A. López, The transition temperature of the nuclear caloric curve, Braz. J. Phys. 34(3A), 904 (2004)

    ADS  Google Scholar 

  78. C. O. Dorso, C. R. Escudero, M. Ison, and J. A. López, Dynamical aspects of isoscaling, Phys. Rev. C 73(4), 044601 (2006)

    ADS  Google Scholar 

  79. C. A. Dorso, P. A. G. Molinelli, and J. A. López, Isoscaling and the nuclear EoS, J. Phys. G 38(11), 115101 (2011)

    ADS  Google Scholar 

  80. C. O. Dorso, P. A. G. Molinelli, and J. A. López, Searching for the origin of isoscaling: Confinement and expansion, Rev. Mex. Phys. S57 (1), 14 (2011)

    Google Scholar 

  81. T. M. Nymand and P. Linse, Ewald summation and reaction field methods for potentials with atomic charges, dipoles, and polarizabilities, J. Chem. Phys. 112, 6152 (2000)

    ADS  Google Scholar 

  82. P. N. Alcain, P. A. Giménez Molinelli, J. I. Nichols, and C. O. Dorso, Effect of Coulomb screening length on nuclear “pasta” simulations, Phys. Rev. C 89(5), 055801 (2014)

    ADS  Google Scholar 

  83. B. L. Holian, A. F. Voter, and R. Ravelo, Thermostatted molecular dynamics: How to avoid the Toda demon hidden in Nosé-Hoover dynamics, Phys. Rev. E 52(3), 2338 (1995)

    ADS  Google Scholar 

  84. H. C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys. 72(4), 2384 (1980)

    ADS  Google Scholar 

  85. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81(1), 511 (1984)

    ADS  Google Scholar 

  86. J. A. López, S. Terrazas Porras, and A. Rodríguez Gutiérrez, Thermodynamics of neutron-rich nuclear matter, AIP Conf. Proc. 1753, 050001 (2016)

    Google Scholar 

  87. B. A. Li, L. W. Chen, and C. M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions, Phys. Rep. 464(4–6), 113 (2008)

    ADS  Google Scholar 

  88. B. A. Li, A. Ramos, G. Verde, and I. Vidana, Topical issue on Nuclear Symmetry Energy, Eur. Phys. J. A 50(2), 9 (2014)

    ADS  Google Scholar 

  89. J. B. Natowitz, G. Röpke, S. Typel, D. Blaschke, A. Bonasera, K. Hagel, T. Klähn, S. Kowalski, L. Qin, S. Shlomo, R. Wada, and H. H. Wolter, Symmetry energy of dilute warm nuclear matter, Phys. Rev. Lett. 104(20), 202501 (2010)

    ADS  Google Scholar 

  90. S. Typel, H. H. Wolter, G. Röpke, and D. Blaschke, Effects of the liquid-gas phase transition and cluster formation on the symmetry energy, Eur. Phys. J. A 50(2), 17 (2014)

    ADS  Google Scholar 

  91. M. Dutra, O. Lourenço, J. S. Sá Martins, A. Delfino, J. R. Stone, and P. D. Stevenson, Skyrme interaction and nuclear matter constraints, Phys. Rev. C 85(3), 035201 (2012)

    ADS  Google Scholar 

  92. M. Dutra, O. Lourenço, S. S. Avancini, B. V. Carlson, A. Delfino, D. P. Menezes, C. Providência, S. Typel, and J. R. Stone, Relativistic mean-field hadronic models under nuclear matter constraints, Phys. Rev. C 90(5), 055203 (2014)

    ADS  Google Scholar 

  93. M. Colonna, V. Baran, M. D. Toro, and H. H. Wolter, Isospin distillation with radial flow: A test of the nuclear symmetry energy, Phys. Rev. C 78(6), 064618 (2008)

    ADS  Google Scholar 

  94. Y. Zhou, B. Anglin, and A. Strachan, Phonon thermal conductivity in nanolaminated composite metals via molecular dynamics, J. Chem. Phys. 127(18), 184702 (2007)

    ADS  Google Scholar 

  95. J. Dunn, E. Antillon, J. Maassen, M. Lundstrom, and A. Strachan, Role of energy distribution in contacts on thermal transport in Si: A molecular dynamics study, J. Appl. Phys. 120(22), 225112 (2016)

    ADS  Google Scholar 

  96. K. H. Lin and A. Strachan, Thermal transport in SiGe superlattice thin films and nanowires: Effects of specimen and periodic lengths, Phys. Rev. B 87(11), 115302 (2013)

    ADS  Google Scholar 

  97. F. A. Lindemann, The calculation of molecular vibration frequencies, Phys. Z. 11, 609 (1910)

    Google Scholar 

  98. Z. W. Birnbaum, Numerical tabulation of the distribution of Kolmogorov’s statistic for finite sample size, J. Am. Stat. Assoc. 47(259), 425 (1952)

    MathSciNet  MATH  Google Scholar 

  99. E. Gosset, A three-dimensional extended Kolmogorov-Smirnov test as a useful tool in astronomy, Astron. Astrophys. 188, 258 (1987)

    ADS  Google Scholar 

  100. G. Fasano and A. Franceschini, A multidimensional version of the Kolmogorov-Smirnov test, Mon. Not. R. Astron. Soc. 225(1), 155 (1987)

    ADS  Google Scholar 

  101. G. J. Babu and E. D. Feigelson, Astronomical Data Anal ysis Software and Systems XV, Eds. C. Gabriel, et al., ASP Conference Series, 351, 127 (2006)

  102. K. Michielsen and H. De Raedt, Integral-geometry morphological image analysis, Phys. Rep. 347(6), 461 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  103. B. Schuetrumpf, M. A. Klatt, K. Iida, J. A. Maruhn, K. Mecke, and P. G. Reinhard, Time-dependent Hartree-Fock approach to nuclear “pasta” at finite temperature, Phys. Rev. C 87(5), 055805 (2013)

    ADS  Google Scholar 

  104. A. Strachan and C. O. Dorso, Time scales in fragmentation, Phys. Rev. C 55(2), 775 (1997)

    ADS  Google Scholar 

  105. A. Strachan and C. O. Dorso, Fragment recognition in molecular dynamics, Phys. Rev. C 56(2), 995 (1997)

    ADS  Google Scholar 

  106. C. O. Dorso and J. Randrup, Early recognition of clusters in molecular dynamics, Phys. Lett. B 301(4), 328 (1993)

    ADS  Google Scholar 

  107. P. N. Alcain and C. O. Dorso, Dynamics of fragment formation in neutron-rich matter, Phys. Rev. C 97(1), 015803 (2018)

    ADS  Google Scholar 

  108. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)

    ADS  MATH  Google Scholar 

Download references

Acknowledgements

The participation of J.A.L. was partly financed by the National Science Foundation grant NSF-PHY 1066031, USA DOE’s Visiting Faculty Program, and by the China-US Theory Institute for Physics with Exotic Nuclei (CUSTIPEN). C.O.D. received support from the Carrera de Investigador CON-ICET, by CONICET grants PIP0871, PIP 2015–2017 GI, founding D4247(12-22-2016), and Inter-American Development Bank (IDB), Grant Number PICT 1692.

The three-dimensional figures were prepared using Visual Molecular Dynamics [31]. Part of the calculations were carried out in the High Performance Computing Center of the University of Texas at El Paso which has a beowulf class of linux clusters with 285 processors, and some with Graphic Processing Units [101] at the University of Buenos Aires.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge A. López, Claudio O. Dorso or Guillermo Frank.

Additional information

This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/sll467-020-1004-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, J.A., Dorso, C.O. & Frank, G. Properties of nuclear pastas. Front. Phys. 16, 24301 (2021). https://doi.org/10.1007/s11467-020-1004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-1004-2

Keywords

Navigation