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Introduction

Cancer-specific exercise programs provide support for 
engaging in leisure time physical activity (i.e., aerobic and 
resistance exercise training) tailored to the needs of individuals 
living with and beyond cancer (i.e., cancer survivors). Cancer-
specific exercise programs have been shown to be successful in 
increasing leisure time physical activity among cancer survivors, 
which is associated with improved physical and psychosocial 
well-being [1,2]. Despite the presence and availability of cancer-
specific exercise programs, not all cancer survivors are aware of 
these resources and/or may experience barriers to enrolling in 
such programs. One avenue that has been suggested to increase 
enrollment in cancer-specific exercise programs is via oncology  

 
provider referrals [3,4]. Though initial program adoption, 
or enrollment, is an important first step, adherence to and 
engagement in these programs is integral for eliciting increases 
in physical activity and subsequent positive health benefits. 
Findings of the effects of oncology provider recommendations on 
exercise engagement are mixed; one previous study found that 
oncologist recommendation may increase exercise behavior in 
newly diagnosed breast cancer survivors [5,6]. whereas another 
found that an oncologist recommended exercise recommendation 
did not increase exercise participation level [5]. In addition to 
mixed findings on how oncologist recommendations impact 
exercise behavior, little information exists on how referral sources 
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influence cancer survivors’ engagement and adherence to cancer-
specific exercise programs. A previous study found that two-
thirds of oncologists reported referring patients to a community-
based program [6]. but it is unclear how this type of referral might 
impact engagement in the program, particularly as compared to 
other types of referrals (e.g., family/friends, or self-referral). Prior 
research in health behaviors have shown mixed findings regarding 
associations between referral type and program engagement. For 
example, one trial delivering acceptance and commitment therapy 
for smoking cessation found engagement in treatment sessions 
did not differ between self-referred and clinically referred patients 
[7]. In contrast, another trial found that provider-referred patients 
were 21% less likely to engage in services offered by a Quitline 
compared to self-referred patients [8]. It is currently unknown 
how the source of referral is related to program adherence or 
engagement in cancer-specific exercise programs. Thus, the 
purpose of this study was to examine differences in attendance 
during a cancer-specific exercise program between oncology 
provider vs. self-referred participants.

Methods 

This study was a secondary data analysis of participants 
enrolled in the Fitness Therapy for Cancer (Fit Cancer) 
program (https://www.chhs.colostate.edu/hes/outreach-and-
engagement/fit-cancer) [9]. an 8-week cancer-specific exercise 
program delivered via videoconferencing software. The program 
consisted of group-based exercise sessions once per week, and 
three physical activity behavior change discussion sessions. 
Participants entered the program by either (a) electronic referral 
during clinic visits via oncology provider (e.g., oncology nurse, 

social worker, navigator) by entering participants cellphone and 
email-address into a secure healthcare system referral webform 
(eReferral), or (b) self-referral via support groups, social media 
pages, or word of mouth. eReferral and self-referred participants 
were matched on age, sex, education, and self-reported physical 
activity level. Program adherence/engagement was defined as 
the number of exercise and discussion sessions attended and 
compared between eReferral and self-referred participants using 
independent t-tests. Completion rate and reasons for joining 
the program were also explored using frequencies, but formal, 
statistical comparisons could not be made because of the small 
sample size.

Results

eReferral participants (N=8) were M=60.70±0.150 years 
old, 65% breast cancer, 50% college educated, and reported 
M=102.34±85.2 minutes per week of moderate to vigorous 
physical activity. Self-referred participants (N=8) were 
M=61.01±0.142 years old, 50% breast cancer, 40% college 
educated and reported M=108.54±82.0 minutes per week 
of moderate to vigorous physical activity. Exercise session 
attendance was lower in eReferral (M=6.8 ±1.13) vs. self-referred 
(M=7±1.06) [t (16) = 0.381, p = 0.07]. There was no difference in 
discussion session attendance between eReferral (M=2.9 ±.1) vs. 
self-referred (M=2.8 ±.125) participants [t (16) =0.158, p=0.87]. 
The program completion rate was 75.0% (n=6) for eReferral 
participants, and 87.5% (n=7) for self-referred participants. We 
found reasons for joining were high for being recommended by 
a healthcare provider and virtual delivery modality. Reasons for 
joining the program are shown in (Figure 1).

Figure 1: Reasons for Joining Fit Cancer Program.

http://dx.doi.org/10.19080/CTOIJ.2023.25.556157


003

Cancer Therapy & Oncology International Journal 

How to cite this article:   Crisafio ME, Leach HJ, Faro JM.  Differences In Adherence to A Cancer-Specific Exercise Program Between Clinical Provider 
Ereferral and Self-Referral. Canc Therapy & Oncol Int J. 2023; 25(2): 556157. DOI: 10.19080/CTOIJ.2023.25.556157

Discussion 

This study found that self-referred participants attended more 
exercise, but a similar number of discussion sessions as eReferral 
participants. It is possible that cancer survivors who self-refer 
to exercise programs may have greater motivation to engage in 
programs. eReferred participants may need additional screening 
to determine level of readiness for exercise, and/or additional 
behavioral support to optimize program engagement/adherence. 
This finding is supported by self-referred participants’ reasons 
for joining being more aligned with intrinsic motivation [10]. 
Previous studies have revealed several factors that may contribute 
to exercise program adherence/engagement among cancer 
survivors, such as demographics, medical and health status [3-11]. 
However, by matching participant characteristics, these findings 
are novel by attempting to elucidate the unique contribution of 
referral source on exercise program engagement/adherence. 
Prior studies in tobacco cessation have found that provider 
referred patients tend to be more racially or ethnically diverse, 
of lower socioeconomic status, have greater comorbidities, and 
lower motivation to cease the behavior when compared to self-
referred patients [7-12]. If future studies determine these findings 
hold true for cancer survivors referred to exercise programs by 
oncology providers, this may present an opportunity to increase 
the reach of exercise programs to underserved groups. It may also 
address health disparities by ensuring additional resources are 
available to provider-referred participants to maximize program 
engagement.

Conclusion

Cancer survivors who are referred to a videoconference 
exercise program by oncology providers may not have the same 
level of engagement with the program as those who self-refer. 
Future studies are needed to determine additional strategies to 
engage patients eReferred by providers to promote a cancer-
specific exercise program to improve health outcomes.
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