
RESEARCH ARTICLE

Radiographic assessment of pectoral flipper

bone maturation in bottlenose dolphins

(Tursiops truncatus), as a novel technique to

accurately estimate chronological age

Ashley BarratcloughID
1*, Roberto Sanz-RequenaID

2, Luis Marti-Bonmati2, Todd

L. Schmitt3, Eric Jensen4, Daniel Garcı́a-Párraga5
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Abstract

Accurate age estimation in wildlife conservation is an important diagnostic tool in the inter-

pretation of biological data, necropsy examination, reproductive status and population

demographics. The most frequently utilized methods to age bottlenose dolphins (Tursiops

truncatus) include tooth extraction; counting dental growth layer groups and dental radiogra-

phy. These methods are inaccurate in dolphins > 13 years old, due to overlapping of the

growth layer groups in dolphins and worn teeth. Establishing a non-invasive method of accu-

rately aging bottlenose dolphins across the entire age range is important to long term con-

servation efforts to understand health status, lifespan, reproduction and survivability. A

database of 126 radiographs from 94 dolphins of known chronological age was utilized to

establish the stages of skeletal ossification over time. A numerical score from -1 to 8 was

assigned to 16 anatomic locations on the pectoral radiograph, to create a formula to esti-

mate age. The most informative areas to evaluate morphologically were the metaphyseal

regions of the radius and ulna, and the proximal and distal epiphysis of metacarpals II and

III. Third order polynomial regression calculated separate age predictor formulas for male

and female dolphins, with females reaching sexual maturity earlier than males. Completion

of epiphyseal closure of the long bones correlated with average sexual maturity. Managed

care dolphin ages could be properly estimated with decreasing precision from within 3

months in animals < 5 years old, to within 5 years in animals > 30 years old. This diagnostic

tool could also be applied to diagnose atypical ossification patterns consistent with nutri-

tional, developmental or growth abnormalities, and identifying subclinical health issues. In

conclusion, knowledge of the lifespan and the onset of sexual maturity for each species will

allow this model to be applied to other cetaceans, facilitating age estimation via pectoral

radiography in future research.
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Introduction

Estimating the age of cetaceans can have large implications in interpreting scientific data of

individual health assessments, reproductive status and population demographics. Determining

the age of stranded individuals with limited pathology on post mortem examination can pro-

vide a reliable insight into the cause of death. Establishing chronological age in cetaceans has

proved challenging, due to minimal external signs of aging, with several methodologies cur-

rently utilized. The most standardized methodology involves counting tooth growth layer

groups (GLGs) in medial longitudinal sections of teeth [1–3]. Tooth extraction is however an

invasive procedure and whilst useful in necropsy examinations, in live animals, alternative less

invasive methodologies are being investigated. In addition GLGs have been shown to be diffi-

cult to interpret in older cetaceans [4], giving misleading age estimations [5, 6]. Overlapping of

dentine layers in bottlenose dolphins (Tursiops truncatus) at ages > 13 years has caused inac-

curacy in estimating the ages of adult animals [1]. GLG methodology is challenging with varia-

tion in assessment, expertise and in tooth preparation techniques shown to reduce age

estimate accuracy [1]. GLGs have also been used effectively in post-mortem analysis to esti-

mate age in ear bones in manatees (Trichechus manatus latirostris) [7], tusks in dugongs

(Dugong dugon) [8], baleen plates and ear wax plugs in mysticetes [9, 10] and claws in bearded

seals (Erignathus barbatus) [11]. In some cetaceans e.g. beluga whales, where continuous tooth

growth is present the neonatal lines and first GLGs are worn away, therefore age cannot be

accurately determined in these cetaceans [12]. Due to the expensive technical equipment, high

quality control, limitations to handling and transport of actual animal tissues, experienced

expertise required to analyze the data and the poor practical application to live animals, alter-

native methodologies are warranted. Dental radiography has been used to accurately age

dolphins < 10 years old when the tooth pulp to tooth size ratio is accurately correlated with

age [13]. Tooth wear prevents this method from being utilized to accurately age adult

dolphins.

Forensic methods to estimate age in marine mammals have included bomb radiocarbon

age validation, radioisotope 210Pb/226Ra disequilibria, histological evaluation of gonadal

maturity and aspartic acid racemization in eye lens nucleus [14–18]. Methods such as telomere

length and bone density studies have had some success, however are relatively limited in sam-

ple size and access to a population of animals of known chronological age [4, 19, 20]. Poor cor-

relation has been observed in archived samples of bone density analysis with known aged

animals [21]. They are often limited to post-mortem samples due to the need for de-fleshed

samples to accurately assess bone density, reducing the clinical and practical application of this

technique [4]. These alternative methods often rely on other additional information such as

body length or GLGs to try and establish correlation between two aging methods rather than

being independently accurate. As body size can be misleading in determining age, establishing

an independent indicator of age estimation would be highly valuable [22]. Imaging techniques

such as micro CT of bone has been used in humans and to assess the pulp to dentine ratio and

provide an age indication in odontocete fossils [23], however this is not practical in live ceta-

ceans or in the field [24].

Radiographic evaluation of the degree of fusion of pectoral flipper epiphyseal plates or the

degree of fusion of the hyoid complex can estimate the age of stranded cetaceans, however this

method has not currently been standardized for accurate chronological age estimation, only

age group classification [25, 26]. The advantage of utilizing skeletal ossification is that changes

occur progressively in an orderly sequence from fetus to elderly adulthood. Radiographs per-

mit direct comparison of individuals without reliance on genetic assessment or total body size

and are intimately related to the sexual maturity of the individual and overall maturation [22].
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Stranded marine mammals with bone pathology on post mortem such as fractures, spondylo-

sis or osteomyelitis could be aged radiographically to improve understanding of the patho-

physiology of necropsy findings [27, 28]. In addition, this methodology could be applied to

aborted neonates to establish the age of the fetus and aid interpretation of the cause of preg-

nancy failure rather than relying on neonate length for age classification [29].

In humans, skeletal ossification has been used to determine age via both hand and foot radiog-

raphy [30, 31]. A combination of physical exam, dental exam and radiographs are recommended

to diagnose abnormal advanced or delayed maturation in children, as well as for the medico-legal

age assessment of individuals. As sexual maturity can vary greatly in age of onset, interpreting age

estimation in conjunction with skeletal maturity or dental records can improve accuracy [30]. In

humans bone age estimation is within 10 per cent of the chronological age [32].

Assessment of skeletal ossification to establish the extent of bone maturity involves a thor-

ough examination incorporating the size, shape and degree of mineralization of the bone and

fundamental knowledge of both endochondral ossification and intramembranous ossification

progression [32]. Initial perichondral ossification transforms the long bones into the charac-

teristic dumbbell shape. The diaphysis of the bone forms from the primary ossification center,

whereas the secondary ossification centers at the ends of the bone form the epiphyses. The

epiphyseal plate is the thin layer of cartilage remaining when the secondary ossification center

is progressively ossified. The metaphysis lies between the diaphysis and the epiphysis and is

where the growth of the bone occurs [32]. Once osteoblasts stop multiplying and the matrix

becomes mineralised, the epiphyseal plate is ossified, fusing with the diaphysis and growth

ceases to occur. Bone width increases via intramembranous ossification with skeletal tissue

developing from fibrous membrane. As ossification occurs in a predictable order, assessment

of the degree of maturation of the epiphyses can give an indication of skeletal maturity or bone

age [33].

Cetacean limb anatomy is unique in structure due to the adaptation and evolution from a

terrestrial to aquatic environment [34, 35]. Paedomorphic patterns of endochondral ossifica-

tion have been described in the vaquita (Phocoena sinus) and harbor porpoise (Phocoena pho-
coena) to identify morphological changes associated with age, however a standardized

approach to enable accurate age estimation is lacking [36]. In the majority of cetaceans previ-

ously studied, there is an established sequence of ossification progression pattern from proxi-

mal to distal including the radius, ulna, carpal, metacarpal and phalangeal bones. This pattern

is remarkably constant, symmetrical and the same for both sexes [25, 37–39]. Physiological

delayed perichondral ossification of the phalangeal diaphysis demonstrates shape changes in

the proximal diaphysis, progressing from ovoid, to deltoid (triangular) and then dumbbell /

rectangular [38]. Species variation has been documented. For example, the striped dolphin

(Stenella coeruleoalba) ossifies the epiphyses of proximal and distal phalanges as well as meta-

carpals I through IV unlike the harbor porpoise where ossification of the epiphyses in digits

one and five is rare [26, 40]. In addition, the rate of skeletal ossification is sexually dimorphic

with females reaching skeletal maturity faster than males [26].

As tooth analysis is a skilled, invasive, expensive, legally complex and time-consuming

methodology, coupled with the inaccuracy >13 years old, we hypothesize that an alternative

simple and standardized non-invasive technique to age cetaceans such as skeletal ossification

is highly advantageous [1, 4, 41]. Improved accuracy of aging techniques will transcend into

greater understanding of population aging demographics, epidemiology and species surviv-

ability. Our aim is to determine the practical application of skeletal ossification maturity

assessment as a tool for age estimation in the bottlenose dolphin by utilizing for the first time a

globally heterogenous population of precisely known chronological ages to validate the

technique.
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Materials and methods

To establish the methodology to estimate the age of bottlenose dolphins via radiography three

anatomic areas of interest were initially studied in 2005. Radiographs were taken of 12 adult

dolphins at Oceanogràfic (Valencia, Spain) of the left lateral-oblique mandible, dorsoventral

bilateral pectoral flipper and left lateral caudal vertebral column at the level of the peduncle

insertion. Comparison of the osteological changes associated with age in the three different

locations demonstrated that the pectoral flipper was the most accurate location for future

assessment of maturity indicators [42]. For this study, dorsoventral radiographs were taken

from a single pectoral flipper with different X-ray equipment per institution, using optimum

settings as close as possible to 70kVp and 6.4mAs. The advent of digital radiography enabled

images over or under exposed to be digitally altered to ensure optimum appearance for accu-

rate radiograph scoring and interpretation. Fig 1 shows normal positioning of a dolphin for

voluntary pectoral radiography.

Unlike humans, where differences in left and right hand radiographs are observed due to

laterality, no significant variation in bone maturation has been observed in preliminary ceta-

cean studies including both pectoral fins, therefore only a single image from each animal and

time point was included in the study [20, 25, 43, 44]. Inclusion criteria required the exact age

of the animal to be known at the time of the radiograph (or close estimation in animals over

30) and no known health concerns impacting the growth rate of the individual. From 2004 to

2019, 126 radiographs were obtained from 94 individuals from a heterogenous consortium of

dolphins which had either been born in human care or resided in managed care for >30 years

from 13 different institutions in Europe, Africa, Asia and USA.

Radiographs were reviewed systematically proceeding from proximal to distal, and from

cranial to caudal [22]. Each score started at the distal ends of the radius and ulna proceeding to

the metacarpals and the associated phalanges systematically. Metacarpal I had poor correlation

with age due to a single secondary center of ossification on the proximal epiphysis and was

therefore excluded from the scoring system. Five carpal bones are consistently present but

again do not show clear differentiated stages of bone maturation and were also excluded from

analysis. Additional or fused carpal bones are documented, however are not correlated with

age and were excluded from the scoring system. For the bones included in assessment, the

Fig 1. Normal positioning of a bottlenose dolphin to obtain a voluntary radiograph of the right pectoral fin.

https://doi.org/10.1371/journal.pone.0222722.g001
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centers of ossification progressed through a regular predictable series of changes in form, char-

acterizing the successive stages of maturity and posterior remodeling. Maturity indicators are

defined as features of the individual bones that are visible in a dorsoventral radiograph of the

flipper that occur regularly and in a definite and irreversible order during aging [22].

Scores were assigned to selected long bones (distal radius and ulna, proximal and distal

metacarpals II, III, and IV, and phalanges from digits II and III) according to the following cri-

teria, with the principles based on Ogden et al (1981) previous work for scoring bone matura-

tion in dolphin pectoral fins, with two additional categories assigned as shown in Fig 2 [25].

• Score -1 - No primary center of ossification visible.

• Score 0 - Primary center present but no secondary ossification center visible.

• Score 1 - Appearance of epiphyseal ossification center, but size is limited

to<50% of the width of the latitude of the adjacent metaphysis.

• Score 2 - Appearance of secondary ossification center is well established

• ranging from between 50–100% of the width of the adjacent metaphysis.

- The physis is clearly evident as a distinct radiolucent space between the secondary

center.

- Secondary ossification center is less mature resulting in irregular depth across the

width.

- Increased radioulnar maturation occurs in a midline to abaxial direction.

• Score 3 - Thinning of the radiolucent physis but no evidence of fusion of

the metaphysis and the secondary ossification center.

- Enhancement of mineral density of the subchondral bone at both sides of the phy-

sis.

- Late stage 2 can easily be confused with early stage 3; aim to distinguish between the

two stages by critically assessing the uniform nature of the width and if it is irregular in dis-

tribution (Stage 2) or even throughout (Stage 3).

Fig 2. Skeletal ossification scores of the long bones and metacarpal bones. The endochondral ossification progression of the 2nd metacarpal (M2) through 8 different

stages. Stage 0 shows no secondary ossification center with no development at either the proximal or distal ends. Stage 1 shows the beginning of the secondary

ossification centers. Note the difference in width of the ossification center compares to the diameter of the metacarpal and how thin the secondary ossification center is

(less than 50% of the surface). Stage 2 shows an increase in width and depth of the secondary ossification center, that is between 50–80% of the width of the metacarpal.

Stage 3 shows the width of the secondary ossification center to be>80% of the metacarpal physis with a reduction in physeal space but it is still fully open. Stage 4 shows

the formation of osseous bridges between the metacarpal and the secondary ossification centers but consolidation is<50% of the total extension. The ends remain open,

fusion is incomplete. Stage 5 shows the ghost hypermineralized line of where the joining of the secondary ossification center has occurred at least over 50% of the total

surface extension. The ends may remain slightly open or fissure be fully consolidated. Stage 6 full closure of growing plate with complete remodeling of the secondary

ossification center with the area showing<50% to no visible ghost line. Stage 7 shows the flattening of the physeal surfaces of the metacarpal with accentuated pointed

edges. Stage 8 shows degenerative bone or cartilage changes associated with the metacarpal with the presence of either osteolysis or proliferation. In extreme cases

calcification of the surrounding cartilage maybe visible.

https://doi.org/10.1371/journal.pone.0222722.g002
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• Score 4 - Formation of osseous bridges, in the radius and ulna this starts in

the midline and proceeds abaxially.

- Key part of stage 4 is the most abaxial regions are still open.

- Whether there is the beginning of osseous bridges forming or 90% formed this still

qualifies as stage 4.

• Score 5 - Complete closure observed with a faint hyperdense ghost physeal line or

- epiphyseal scar of at least 50% of the whole plate representing remnants of the juxta-

position of the physeal plates.

- The epiphyseal plate may not reach full length of the diaphysis but the physis is

closed.

• Score 6 - Physeal line is being remodeled with <50% to no evidence of the

Hypermineralized transverse physeal remnant.

- The epiphyseal plate covers full length of the diaphysis.

• Score 7 - Complete fusion, no evidence at all of previous ghost physeal plate.

- Distal ends of the metacarpals and proximal and distal ends of phalanges become

flattened with pointed lateral and medial distal corners.

• Score 8 - Arthritic changes apparent including the presence of osteophytes,

osteolysis, articular calcifications and possible fusion of metacarpal bones or

phalanges.

The ossification stages from the long bones cannot be directly applied to the delta bones

due to the lack of secondary ossification centers. Metacarpal V and the phalanges associated

with metacarpal IV are delta bones in bottlenose dolphins [38]. The delta bones ossify at differ-

ent stages and are therefore inherently valuable in the accurate ageing of older animals. The

term delta is used when bones are triangular in shape with a convex longitudinal border and a

concave longitudinal border [38]. The following descriptions can be applied to these three

bones and are shown in Fig 3:

• Stage -1 –No primary ossification center present

Fig 3. M5 and first phalange of digit 4 delta bone ossification stages. Stage -1 –Not present. Stage 0 –Very small oval shape undefined delta shape. Stage 1 –Axial

surface starts to be linear consistent with delta shape. Stage 2 –one flat surface. Areas or slight irregular perimetral surface typically on the proximal side with a degree of

adjacent mineralization which can oppose the epiphyseal surface but not necessarily show definitive osseous bridge formation. Bone density is clearly reduced in

peripheral new bone in comparison to the primary ossification center. Stage 3 –Increased mineralization of adjacent proximal cartilaginous surface, consolidation may

not be present. Stage 4 –Area increases in consolidation and mineralization, slightly less dense than the body of the delta bone. A defined hyper mineralized physeal

plate line is present. The abaxial aspect can show the initiation of the new straight lateral border rather than horseshoe shape. Stage 5 –Density of secondary ossification

center is similar to primary bone and initial mineralization present on distal surface with the proximal side showing defined straight lateral border rather than horseshoe

shape. Individual variation may result in non-linear borders therefore emphasis should be placed on the secondary ossification centers on the proximal and distal

surfaces. Stage 6 –Smooth proximal surface with matching density to the primary ossification center, distal surface still shows some incongruent mineralization. Physeal

line is still visible denoted by dotted line. Stage 7 –Smooth proximal surface with complete consolidation of the secondary ossification center on both sides and

dissolution of the physeal line. Stage 8 –Degenerative changes present.

https://doi.org/10.1371/journal.pone.0222722.g003
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• Stage 0 –Very small ovoid shape, undefined delta shape

• Stage 1 –Part of the surface starts to be linear, consistent with delta shape

• Stage 2 –Non uniform surface with a degree of adjacent mineralization which can oppose

the epiphyseal surface but not necessarily show definitive osseous bridge formation. Bone

density of the new bone is clearly reduced in comparison to the primary ossification center.

• Stage 3 –Increased mineralization of adjacent axial cartilaginous surface, consolidation may

not be present.

• Stage 4 –Area of new bone increases in consolidation and mineralization, slightly less dense

than the body of the delta bone. A defined hyperminerlized physeal plate line is present. The

abaxial aspect can show the initiation of the other straight lateral border rather than horse-

shoe shape (delta).

• Stage 5 –Density of secondary ossification center is similar to primary bone and initial min-

eralization present on abaxial surface with the proximal side showing defined straight lateral

opposed border rather than horseshoe shape. Individual variation may result in non-linear

borders, therefore emphasis should be placed on the secondary ossification centers on the

axial and abaxial surfaces.

• Stage 6 –Smooth axial surface with matching density to the primary ossification center, abax-

ial surface still shows some incongruent mineralization.

• Stage 7 –Smooth axial surface with complete consolidation of the secondary ossification cen-

ter on both sides and dissolution of the physeal line.

• Stage 8 –Degenerative changes present

Due to the transition between stages often taking several months to years, half scores were

implemented if the radiograph demonstrated a transition into the next stage but it was not com-

plete. For example stage 4.5 would be 95% closure of the plate with a small gap present at the lat-

eral border of the plate, therefore progression has occurred since “stage 4” but it cannot be fully

categorized as stage 5. The proximal humerus was not assessed due to inaccessibility to obtain

radiographic images within this same plane and difficulty visualizing this in the live animal [25].

The quality of the radiograph is influential on the interpretation of results and accuracy of

the age estimation. One of the key features to assess prior to applying the scoring system is the

degree of rotation of the carpal cuboidal bones. Any degree of rotation of the pectoral flipper is

clearly depicted amongst these five bones and would have a subsequent impact on the interpre-

tation of the growth plates on the metacarpals, where rotation may not be so clearly apparent.

Slight rotation can impede the visualization of an epiphyseal line despite the presence of the

growth plate and can also alter the appearance of the trabecular pattern across the former epi-

physial-diaphyseal junction leading to incorrect scoring [22].

Initially 32 bone surfaces were assessed using a modified scoring system to Ogden et al. and

the human recommendation [22, 25]. Pearson’s correlation coefficients were performed to see

which of the 32 measurements could be potentially used as positive predictor values in estimat-

ing the age. To optimize assessment time and statistical performance, the number locations

was reduced via excluding bones showing a correlation with age< 0.80; resulting in 16 final

scoring locations (Fig 4).

Each of the radiographs was scored by two independent reviewers in a blind study where

the actual age was unknown during the assessment (DGP and AB marine mammal
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veterinarians). A score of -1 to 8 was given for each of the 16 locations. These 16 individual

scores were combined (added up) to give an overall score for each radiograph. Statistical analy-

sis of Wilcoxon Signed rank test was performed to compare inter and intra observer error. A

one way repeated measures ANOVA was performed to compare all the scores from all

reviewers.

Fig 4. Scoring locations to systematically age a pectoral radiograph in the bottlenose dolphin. Anatomic locations included in the assessment are denoted by X and

include the distal surfaces of the radius and ulna, the proximal and distal metacarpals II, II and IV, metacarpal V and the proximal and distal surfaces of the first

phalange associated with metacarpals II and III. In addition the second phalange for metacarpals II and III and the first phalange associated with metacarpal IV were

given a combined score for the proximal and distal surfaces.

https://doi.org/10.1371/journal.pone.0222722.g004
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Third order polynomial regressions were performed independently for females and males

to assess the relationship between known chronological age of the dolphin and the assigned

skeletal ossification score. Datasets were split in training (70%) and test (30%) subsets. In

order to obtain the optimal fit for the available data, 1000 iterations were performed, randomly

building the training and test subsets for each iteration. Furthermore, to ensure a homoge-

neous distribution of ages in the training and test samples, four groups were defined: < 5

years, 5–10 years, 10–20 years and> 20 years, so that the randomization always included 70/

30% of cases from each group. Model fit was assessed using R2, adjusted R2 and root mean

squared error (RMSE). The results of the test phase were assessed using RMSE.

The digital bone age photographic atlas was created with the best quality image for a given

age and sex. The standards were grouped into age categories based on the variability for a

given age with increased variation occurring in the earlier growth stages. The intervals between

groupings approximate one standard deviation for skeletal maturity at that chronological age.

The range of ages is from– 6 months (aborted fetus) to 40 years old in females and– 5 months

(aborted fetus) to 58 years old in males.

Results

A total of 126 radiographs were evaluated in the study; 60 female radiographs from 42 different

females, and 66 male radiographs from 52 individuals.

Third order polynomial regression resulted in R2 values for female and males of 0.97 (Fig 5)

and 0.96 (Fig 6) respectively. The following equations can therefore be used to estimate age,

with y = age estimation and x = ossification score.

Females: y = 0.0000383x3 − 0.0019398x2 + 0.1101071x − 0.2517343

Males: y = 0.0000293x3 − 0.0010975x2 + 0.1462751x − 1.0465702

The results for the optimal model fit are presented in Table 1. The corresponding test

results are presented in Table 2, showing a global RMSE for females and males of 2.4 years.

The smallest error was in females less than 5 years of age where the age could be estimated to

within 0.35 years. The largest error was in females > 20 years old of 4.3 years.

In comparison of the scores for a given age between the two sexes the Wilcoxon Signed

Rank Test confirmed a significant difference between sexes, with p = 0.00001. Fig 7 demon-

strates the comparison of the growth rates with female dolphins (blue) growing faster and

reaching sexual maturity earlier than male dolphins (red).

At the studied region, the first epiphyseal center to appear is associated with the distal

radius and ulna and appears at approximately 4–6 weeks of age. Table 3 lists the defining

changes and the ages at which they occur in males and females. The predictive value of the

ossification centers varies with age and changes during growth. The location of the primary

focus of assessment should shift according to estimated chronological age. For example meta-

carpal IV and V are of greater importance in older age. The transition of the radius and ulna

from stages 4 to 5 occurs in conjunction with sexual maturity. The distal phalangeal surfaces

do not reach stage 5 until several years after the radius and ulna, and metacarpal 5 does not

reach stage 6 until even later. The additional lateral carpal bone, adjacent to the ulna and prox-

imal to metacarpal 5 does not develop in any female younger than 30 years and was present

only in one male older than 50 years. Consequently, the value of each individual bone carries

different weight depending on the age of the individual. The algorithm created can be applied

to all ages and therefore includes 16 different measurements. Focusing on degenerative (oste-

oarthritic or osteolytic) changes will be of greater benefit to accurately estimate age in elderly

individuals.
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Discussion

Skeletal ossification follows a predictable systematic progression, enabling accurate estimation

of chronological age. Although well established in human medicine, previous application to

Fig 5. Grade 3 polynomial of score against age (years) in female dolphins with error intervals per age category.

https://doi.org/10.1371/journal.pone.0222722.g005
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wildlife conservation is limited due to lack of known aged individuals. Previous studies have

documented age associated changes in cetacean flippers but have been unable to create a pre-

dictive model to estimate age without a control population [38]. Examining the chronological

Fig 6. Grade 3 polynomial of score against age (years) in male dolphins with error intervals per age category.

https://doi.org/10.1371/journal.pone.0222722.g006
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progression of skeletal ossification in this known age population has enabled accurate predic-

tion curves to be created to facilitate age estimation of dolphins of unknown life stage.

Healthy cetaceans of known chronological age are primarily limited to those in human care

whose original birth date and life history is well documented. Sexual dimorphism and different

growth rates have required two separate formulas to be created, one for each sex [45]. Female

dolphins have been shown to grow at a faster rate initially, until they reach sexual maturity,

then asymptote in growth earlier than males (Fig 7) [46]. Females are documented to reach

sexual maturity at approximately 6–8 years old with a range of 5–12 years of age previously

observed [45–47]. Males however take longer to reach sexual maturity with ages of 10–15 years

being observed [45]. This is consistent with the ages observed of growth plate closure in this

study with ages 6–8 years showing the transition of radial scores from 4 to 5 in females and age

10–12 years showing the same changes in males (Table 3).

In humans, ethnic origin has less effect on skeletal maturation rates than the populations

socio-economic status [48]. In cetaceans, species variation in the age of sexual maturity has

been linked to both behavior and life span. It may be in dolphins that species variation exists,

however this could also be linked to food availability and natural stressors in the geolocation of

the population. An example of species variation is in the harbor porpoise, where sexual dimor-

phism and early sexual maturity results in parallel growth between males and females up until

6 years old, when females show more progressive development [26, 49]. This is thought to be

linked to earlier male pelvic bone and musculature development to allowing faster swimming

speeds in order to successfully mate with the female [36]. Increases in estrogens and testoster-

one levels during puberty promote mineralization of growth plate cartilage driving bone matu-

ration [50]. This fact facilitates application of the knowledge of species life span and sexual

maturity permitting radiographic interpretation of skeletal ossification to allow extrapolation

of this model to other species and provide an approximation of age demographic [51]. Female

fin whales (Balaenoptera physalus) have been shown to attain sexual maturity later than males

but in the vast majority of cetaceans males mature later than females [52].

Human age estimation curves from hand radiographs cease post age 18, when sexual matu-

rity has completed and epiphyseal lines are obliterated [22]. Due to paedomorphosis and

Table 1. Model fit for age estimation in female and male dolphins.

< 5 years 5–10 years 10–20 years > 20 years Global

Female R2 0.977 0.972 0.977 0.980 0.969

Adjusted R2 0.975 0.970 0.975 0.979 0.966

RMSE 2.013 2.115 1.870 1.908 2.180

Male R2 0.985 0.988 0.987 0.990 0.978

Adjusted R2 0.984 0.988 0.986 0.989 0.976

RMSE 1.838 1.671 1.567 1.588 1.851

https://doi.org/10.1371/journal.pone.0222722.t001

Table 2. Test phase results showing the RMSE for each age demographic and global RMSE in years for female and

male dolphin age estimates.

Age Group Female RMSE (years) Male RMSE (years)

<5 years 0.35 0.87

5–10 years 0.88 1.32

10–20 years 1.88 1.82

> 20 4.28 4.09

Global 2.43 2.44

https://doi.org/10.1371/journal.pone.0222722.t002
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hyperphalangy of cetaceans, progressive age-related changes continue to occur after sexual

maturity, enabling application of this skeletal maturation concept to age dolphins of all life

stages. The additional inclusion of degenerative changes in the scoring system allows increase

accuracy in geriatric animals also, long after skeletal maturation of most bones has completed

Fig 7. Comparison of the growth rates with female dolphins (blue) growing faster and reaching sexual maturity earlier than male dolphins (red).

https://doi.org/10.1371/journal.pone.0222722.g007
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[25]. The use of negative scoring in the formula facilitates the application of this technique to

aid diagnosis of the timing of abortion and determining fetal vs neonatal tissues. In aborted

fetuses there will be no primary ossification centers of the carpal bones or distal phalanges and

a complete lack of secondary ossification centers (Fig 8). This could facilitate age estimation in

decomposing neonatal carcasses where length data is not available [29].

Inevitably, acquisition of radiographs of geriatric dolphins of known age was limited. Accu-

rately aging older radiographs relies on documenting osteoarthritic changes including cartilage

calcification; Fig 9. Due to the subtle changes occurring in older animals there is increased

standard deviation in age estimation > 20 years old compared to animals < 5 years of age,

where skeletal ossification has improved precision of predicting the age to within a few

months. Skeletal aging is still apparent radiographically in geriatric dolphins, shown by one

male included in the dataset where radiographs were taken at age 40 and 49 and progressive

aging of the distal phalanges and degenerative changes were easily differentiated. Caution

should be taken in suspected older cases as it is possible that the edges of the metacarpals and

phalanges become rounded again due to osteolytic degenerative changes so the bone may

appear like a score 5 but actually indicate 8. This demonstrates the benefit of interpreting each

individual bone within context of the entire radiograph. The life span of free-ranging dolphins

is estimated to be around 35 years old in females and approximately 30 years old in males with

maximum ages of 60 previously reported [45, 53].

Each individual bone can be assessed discretely, however, one should also aim to interpret

the bone score within the context of the radiograph. For example if the growth plate appears to

be partially closed, but the alignment of the carpal bones is ambiguous then comparing the

proximal surface of the 2nd metacarpal with the distal score of the radius would enable

improved interpretation. In dolphins, ossification proceeds along the proximo-distal axis of

the metacarpal and phalangeal bones. In addition, fusion of the growth plates of the radius and

ulna is known to occur from axial to abaxial and in synchrony, therefore the scores of the

radius and ulna are likely to be comparable. Incongruous long bone growth can be indicative

of nutritional or metabolic abnormalities [54]. Dolphin carpal bones showed inconsistent

Table 3. The defining changes observed radiographically and the ages when these changes are documented in

each sex.

Radiographic Observation Age observed in

females

Age observed in

males

Secondary Ossification center of radius and ulna reaches full width of

opposing diaphysis

(Stage 3)

6 months 2 years

Secondary ossification centers

present proximally and distally on M IV (Stage 3)

3 years 5 years

Closure of radius and ulna secondary ossification centers

(Stage 5)

6–8 years 10–12 years

Metacarpal II proximal closure

(Stage 5)

6 years 9 years

Metacarpal II distal closure

(Stage 5)

10 years 13 years

2nd Phalanx of M II proximal

and distal closure (Stage 5)

10 years 13 years

3rd Phalanx of M II proximal and distal closure (Stage 5) 10 years 14 years

Dissolution of physeal line in radius and ulna (Stage 6) > 12 years > 15 years

Dissolution of MII and MIII physeal lines (Stage 6) > 20 years > 25 years

Appearance of lateral ulna ossification > 30 years > 40 years

https://doi.org/10.1371/journal.pone.0222722.t003
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signs of ageing and were therefore not included in the final 16 scoring locations. The delta-

shaped bones, however, aged in a different series and required their own scoring system to

objectively score them (Fig 3) [38]. In humans, delta-shaped metacarpals are referred to as a

longitudinal epiphyseal bracket, being a pathological finding [55]. Delayed perichondral ossifi-

cation is a normal finding in cetaceans and facilitates the use of radiographic age estimation

through all life stages.

An advantage of the “atlas” approach to radiographic assessment rather than a scoring sys-

tem bone by bone for age estimation is the ability to assess the overall picture and observe each

bone within context of the next. There is potentially a greater margin for error due to the less

quantitative and more subjective methodology. While the individual bone scoring is poten-

tially more laborious, once the reader is familiar with the system, it is very quick and easy to

use and can allow for a fixed quantitative estimate to be applied. In considering the advantages

and disadvantages of each methodology, this manuscript aims to provide both options to

enable age interpretation of a radiograph of a dolphin pectoral flipper[56].

A single radiograph was obtained from each dolphin rather than bilateral pectoral radio-

graphs. This was due to the lack of differences between both flippers in all animals sampled at

the beginning of the study and the absence of laterality behavior and asymmetry observed in

previous studies between pectoral flippers [4, 25, 37, 40]. Advantages of a single radiograph

include a reduction in radiation exposure to the dolphin and the operators and a reduction in

time and effort required to obtain a single image rather than two. The practical approach

enables the technique to be applied to both live cetaceans, stranded, in the field or in human

care, in addition to archived museum specimens. The flat, thin region of the pectoral flipper

Fig 8. Radiograph of an aborted female fetus at 6 months prior to parturition. Note the lack of secondary ossification centers and missing carpal bones and

metacarpals I and V.

https://doi.org/10.1371/journal.pone.0222722.g008
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enables reproducibility and reduced positional variation. Additionally, in the flipper the bone

tissue contrasts highly with surrounding soft tissue, allowing low power battery operated

radiographic equipment with short exposure times still obtaining adequate sharp diagnostic

Fig 9. Radiograph of a pectoral flipper of a 58 year old male dolphin. Note the osteoarthritic changes and calcification of the cartilages demonstrating the degenerative

changes observed in geriatric dolphins.

https://doi.org/10.1371/journal.pone.0222722.g009
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images. This non-invasive approach is highly advantageous in comparison to the complex

tooth GLG methodology, utilizing simple equipment available within a standard veterinary

practice [57].

The factors determining normal maturation patterns are still not fully understood. How-

ever, genetics, environmental factors, endocrinological status including thyroxine, growth hor-

mone and sex steroids play important roles [25, 32]. The presence, absence or fusion of certain

bones appears to be genetically determined and unrelated to the age of the animal (Fig 10,

Stage 7). This could also provide relative information regarding paternities. Discrepancy

between skeletal age and dental age has been shown to be linked to possible hormonal abnor-

malities [58, 59]. Pathology is more likely to slow skeletal maturation and retard growth, how-

ever some conditions do exist which can accelerate skeletal development, such as precocious

puberty and hyperthyroidism. In dolphins with known endocrinological diseases, such as

those with adreno-cortical insufficiency, there could be an impact on the rate of skeletal matu-

ration, potentially resulting in age estimations lower than the actual chronological age [60, 61].

Nutritional status is known to affect bone density with suboptimal nutrition linked to the

delayed growth plate closure [62]. In addition to the presence or absence of metabolic disease,

alterations of nutritional standards may also influence the growth rate and subsequent radio-

graphic appearance [63]. For example, the negative effect of rickets on growth plate closure in

humans is well described [54]. Interpretation of blood analytes such as ALKP in conjunction

with radiographic assessment could enable diagnosis of metabolic disturbances which could

impact on growth rate and subsequent age estimation [64].

The timing and duration of the nutritional insult is paramount to the long term effects

observed, with rapid response to nutritional compromise being observed to reduce the chronic

effects [65, 66]. Negative effects of compromised nutrition are likely to be more marked in sub-

adults with open growth plates than in a skeletally mature adult. Stress or trauma have also

been represented in the diaphysis of long bones with alterations in growth rate resulting in a

stress line of Harris of increased density due to arrested growth [67]. Observations of Harris

lines can aid in overall health assessment and provide an estimation of the timing of previously

traumatic, stressful or nutritionally compromised events [68]. The transverse scar demon-

strates the area of bone which was contiguous with the epiphyseal cartilage at the time of the

insult, providing an estimation of the timing of compromised growth. This could potentially

be applied to free-ranging dolphins which have had a known traumatic event such as the

Deepwater Horizon Oil Spill in 2010 [69]. However the technique can be dependable of good

radiographic resolution in order to properly interpret these changes as well as certain details

such the extension of ghost physeal line to discern between stages 5 and 6 or to detect initial

pathological mineralization’s as degenerative changes.

The radiographs were analyzed by two experienced marine mammal veterinarians, however

neither individual had experience specifically in radiography or skeletal maturity determina-

tions. Consequently, interdisciplinary collaboration with a human physician and a biomedical

engineer with extensive experience in diagnostic imaging and skeletal maturity determinations

ensured a correct analytic approach was performed in application of the human approach to

dolphins (Fig 10).

Reviews of radiographs were performed blind with no knowledge of the health status of the

individual by one reviewer. Two additional cases not included in the study had abnormally

low growth rates and were easily identifiable based on their radiographs, during blind reviews,

with zero prior knowledge to the reviewer of potential health concerns. Both individuals (one

male of 10 years old and one male of 20 years old) from different institutions demonstrated

retarded growth falling consistently behind the curve. These two animals having clinical his-

tory of chronic disease, were excluded from the study due to failure to meet the inclusion
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criteria of no health concerns. These cases are comparable with human literature with chronic

health concerns impacting bone development [70]. This indicates the potential of this method-

ology also as a clinical diagnostic tool in the identification of subclinical nutritional or meta-

bolic compromised clinical states. Diagnosis could also be made via a time series of

radiographs identifying suboptimal progression of expected skeletal ossification.

The most accurate interpretation of this study of age, growth and development will be high-

est for those familiar with the technique, cetacean anatomy and sufficient background knowl-

edge in radiography to interpret the images to the full potential of utilizing the tool for health

assessment (Fig 11). The use of this method in conjunction with other currently used methods

such as body length, dental radiographs, tooth GLG or future methods such as DNA methyla-

tion will improve accuracy of the age prediction and facilitate validation. This method not

only provides a single age estimation but, potentially more importantly, also provides informa-

tion regarding the maturation process over time, which is currently unachievable accurately

via other methods while still very relevant for understanding natural history in ecological stud-

ies. As in human references the arbitrary appearance of the scoring system will be reduced

with the more experienced viewers which can interpret the individual bone within the context

of the entire flipper [22].

A larger sample size would provide improved accuracy of age prediction. Additional cases

to facilitate future model refinement would be welcomed. In any chronological age group of

any species there are inevitably individuals with faster or slower rates of physical development

for a given chronological age. Skeletal status diversity of individuals of the same age are repre-

sented within this cohort enabling the creation of standards which have an accurate standard

deviation for a given age. This will enable future application to other populations of bottlenose

dolphins. One standard deviation either side of the skeletal age estimation will include two

thirds of the dolphin population with two standard deviations including 90%. Outside of this

range will likely indicate retarded or accelerated pathological growth abnormalities. Differ-

ences in growth rates between free ranging dolphins and those in human care cannot be inter-

preted at this age. Future research assessing radiographs of a wild population of known

chronological age are needed to assess the accuracy of applying these estimation formulas to

other populations.

The reproducibility of the radiographic scores (precision) and the accuracy (correct age

estimate) both require quality control to ensure a successfully implemented age estimation

program. Although in human medicine the single bone scoring method of age determination

is more time consuming, it has not been shown to necessarily yield more accurate results than

the radiographic atlas, which is why both methods are provided here [56, 71]. Quality control

to minimize bias was performed via using known age samples rather than relying on another

method to estimate age. The intra and inter observer errors in this study were not significant,

indicating precision and reproducibility between reviewers and on multiple assessments of the

same image.

Performing 1000 iterations of the model to validate the equation predictions means other

dolphins with a comparable genetic and environmental background should correspond closely

to the standard created. The inevitable variability amongst individuals of growth rate and final

size achieved means some individuals will fit the model better than others. Even in a geneti-

cally homogenous population variations will likely occur.

Future research will involve the use of computed algorithms capable of automatically ren-

dering the age of the dolphin from the pectoral flipper radiograph through image recognition

Fig 10. Progressive ageing of the radius and ulna with associated stages.

https://doi.org/10.1371/journal.pone.0222722.g010
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with artificial intelligence algorithms [72]. Relatively small sample size and high individual var-

iation in shape and size, coupled with the large number ossification centers for assessment

have limited the computer algorithm design. Using the atlas database serves as an intuitive

Fig 11. Labelled radiograph to confirm bone identification to enable wide application of the technique if cetacean anatomy is unfamiliar.

https://doi.org/10.1371/journal.pone.0222722.g011
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global interpretation via gross visual assessment and direct comparison of cases. Magnetic res-

onance imaging (MRI) has been shown to provide increased accuracy of age estimation of

growth layer closure in older specimens in comparison to radiography. However, for the pur-

poses of field conservation, research and feasibility for the dolphin clinician, radiography is the

superior practical option [73].

Previously, despite the availability of radiography in clinical practice and accessibility for

ante and post mortem sampling, radiograph interpretation could only ascribe a specimen to a

general age class rather than provide an accurate age estimation within 2–5 years [4]. This new

technique aims to replace the invasive tooth extraction aging methodology providing a fast

readily available alternative. Diagnostically working with images instead of tissues allows sim-

ple handling procedures, international sharing of information and widespread use of the tech-

nique to improve knowledge of cetacean ages globally. Future progressive inclusion of

additional images obtained from animals of known chronological age in light of this database

will increase precision and repeatability of age estimations across the demographic. In conclu-

sion, this project not only provides equations to accurately quantify age estimation but also

provides a reference collection of images for digital image exchange and to enable collabora-

tion and training among different institutions to extrapolate the principles to other cetacean

species.

Supporting information

S1 Table. Individual scores for each radiograph used to create the equations to estimate

chronological age. Numbers 1–16 correlate with the 16 anatomical locations outlined in Fig 4.

Sum is the total score assigned to each radiograph.

(XLSX)
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References
1. Perrin WF, Myrick AC. Age determination of toothed whales and sirenians: International Whaling Com-

mission; 1980.

2. Zweifel JR, Perrin WF. Fitting growth curves to odontocete tooth layer/length data. Age determination of

toothed whales and sirenians Rep Int Whal Commn. 1980; 3:216.

3. Hohn AA. Age determination and age related factors in the teeth of Western North Atlantic bottlenose

dolphins. Scientific Reports of the Whales Research Institute. 1980(32):39–66.

4. Butti C, Corain L, Cozzi B, PodestàM, Pirone A, Affronte M, et al. Age estimation in the Mediterranean

bottlenose dolphin Tursiops truncatus (Montagu 1821) by bone density of the thoracic limb. Journal of

Anatomy. 2007; 211(5):639–46. https://doi.org/10.1111/j.1469-7580.2007.00805.x PMID: 17850286

5. Hui CA. Reliability of using dentin layers for age determination in Tursiops truncatus: Naval Ocean Sys-

tems Center Biosciences Department; 1978.

6. Kimura M. Variability in techniques of counting dentinal growth layer groups in a tooth of a known-age

dolphin, Tursiops truncatus. Age Determination of Toothed Whales and Sirenians. 1980(3):161.

7. Schwarz LK, Runge MC. Hierarchical Bayesian analysis to incorporate age uncertainty in growth curve

analysis and estimates of age from length: Florida manatee (Trichechus manatus) carcasses. Canadian

Journal of Fisheries and Aquatic Sciences. 2009; 66(10):1775–89.

8. Marsh H. Age determination of the dugong (Dugong dugon (Muller)) in northern Australia and its biologi-

cal implications: Zoology Department, James Cook University of North Queensland; 1980.

9. Lubetkin SC, Zeh JE, Rosa C, George JC. Age estimation for young bowhead whales (Balaena mysti-

cetus) using annual baleen growth increments. Canadian Journal of Zoology. 2008; 86(6):525–38.

10. Lockyer C. The age at sexual maturity of the southern fin whale (Balaenoptera physalus) using annual

layer counts in the ear plug. ICES Journal of Marine Science. 1972; 34(2):276–94.

11. Benjaminsen T. Age determination and the growth and age distribution from cementum growth layers of

bearded seals at Svalbard. Fiskeridirektoratets Skr. 1973; 16:159–70.

12. Lockyer C, Hohn AA, Hobbs R, Stewart REA. Report of the workshop on age estimation in beluga:

Beaufort, North Carolina, US 5–9 December 2011. NAMMCO Scientific Publications. 2016; 10.

13. Cameriere R, Ferrante L, Cingolani M. Variations in pulp/tooth area ratio as an indicator of age: a prelim-

inary study. Journal of Forensic Science. 2004; 49(2):1–3.

14. George JC, Bada J, Zeh J, Scott L, Brown SE, O’Hara T, et al. Age and growth estimates of bowhead

whales (Balaena mysticetus) via aspartic acid racemization. Canadian Journal of Zoology. 1999; 77

(4):571–80.

15. Bada JL, Brown S, Masters PM. Age determination of marine mammals based on aspartic acid racemi-

zation in the teeth and lens nucleus. Age Determination of Toothed Whales and Sirenians Report of the

International Whaling Commission, Special. 1980(3):113–8.

16. Ferrero RC, Walker WA. Age, growth, and reproductive patterns of Dall’s porpoise (Phocoenoides dalli)

in the central North Pacific Ocean. Marine Mammal Science. 1999; 15(2):273–313.

17. Campana SE, Stewart REA. Bomb dating, age validation and quality control of age determinations of

monodontids and other marine mammals. NAMMCO Scientific Publications. 2014; 10.

18. Kastelle CR, Shelden KEW, Kimura DK. Age determination of mysticete whales using 210Pb/226Ra

disequilibria. Canadian journal of zoology. 2003; 81(1):21–32.

Ageing bottlenose dolphins via pectoral fin radiography

PLOS ONE | https://doi.org/10.1371/journal.pone.0222722 September 26, 2019 22 / 25

https://doi.org/10.1111/j.1469-7580.2007.00805.x
http://www.ncbi.nlm.nih.gov/pubmed/17850286
https://doi.org/10.1371/journal.pone.0222722


19. Garde E, Frie AK, Dunshea G, Hansen SH, Kovacs KM, Lydersen C. Harp seal ageing techniques—

teeth, aspartic acid racemization, and telomere sequence analysis. Journal of Mammalogy. 2010; 91

(6):1365–74.

20. Guglielmini C, Zotti A, Bernardini D, Pietra M, Podestá M, Cozzi B. Bone density of the arm and forearm
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ité. Legal medicine. 2003; 5:S367–S71. PMID: 12935635

49. Galatius A, Jespersen Å. Bilateral directional asymmetry of the appendicular skeleton of the harbor por-

poise (Phocoena phocoena). Marine mammal science. 2005; 21(3):401–10.

50. Cutler GB Jr. The role of estrogen in bone growth and maturation during childhood and adolescence.

The Journal of steroid biochemistry and molecular biology. 1997; 61(3–6):141–4. PMID: 9365183

51. Stockin KA, Wiseman N, Hartman A, Moffat N, Roe WD. Use of radiography to determine age class and

assist with the post-mortem diagnostics of a Bryde’s whale (Balaenoptera brydei). New Zealand Journal

of Marine and Freshwater Research. 2008; 42(3):307–13.

52. Aguilar A, Lockyer CH. Growth, physical maturity, and mortality of fin whales (Balaenoptera physalus)

inhabiting the temperate waters of the northeast Atlantic. Canadian Journal of Zoology. 1987; 65

(2):253–64.

53. Stolen MK, Barlow J. A model life table for bottlenose dolphins (Tursiops truncatus) from the Indian

River Lagoon System, Florida, USA. Marine mammal science. 2003; 19(4):630–49.

54. Thacher TD, Fischer PR, Pettifor JM, Lawson JO, Manaster BJ, Reading JC. Radiographic scoring

method for the assessment of the severity of nutritional rickets. Journal of Tropical Pediatrics. 2000; 46

(3):132–9. https://doi.org/10.1093/tropej/46.3.132 PMID: 10893912

55. Choo AD, Mubarak SJ. Longitudinal epiphyseal bracket. Journal of children’s orthopaedics. 2013; 7

(6):449–54. https://doi.org/10.1007/s11832-013-0544-1 PMID: 24432108

56. Andersen E. Comparison of Tanner-Whitehouse and Greulich-Pyle methods in a large scale Danish

survey. American journal of physical anthropology. 1971; 35(3):373–6. https://doi.org/10.1002/ajpa.

1330350312 PMID: 4332702

57. Lockyer C, Mackey B, Read F, Härkönen T, Hasselmeier I. Age determination methods in harbour

seals (Phoca vitulina) with a review of methods applicable to carnivores. NAMMCO Scientific Publica-

tions. 2010; 8:245–63.

58. Garn SM, Lewis AB, Blizzard RM. Endocrine factors in dental development. Journal of Dental

Research. 1965; 44(1):243–58.

59. Keller EE, Sather AH, Hayles AB. Dental and skeletal development in various endocrine and metabolic

diseases. The Journal of the American Dental Association. 1970; 81(2):415–9. https://doi.org/10.

14219/jada.archive.1970.0173 PMID: 4316671

60. Schwacke LH, Zolman ES, Balmer BC, De Guise S, George RC, Hoguet J, et al. Anaemia, hypothyroid-

ism and immune suppression associated with polychlorinated biphenyl exposure in bottlenose dolphins

(Tursiops truncatus). Proceedings Biological sciences / The Royal Society. 2012; 279(1726):48–57.

61. Schwacke LH, Smith CR, Townsend FI, Wells RS, Hart LB, Balmer BC, et al. Health of common bottle-

nose dolphins (Tursiops truncatus) in Barataria Bay, Louisiana, following the deepwater horizon oil spill.

Environ Sci Technol. 2014; 48(1):93–103. https://doi.org/10.1021/es403610f PMID: 24350796

62. Lewall EF, Cowan IM. Age determination in black-tail deer by degree of ossification of the epiphyseal

plate in the long bones. Canadian Journal of Zoology. 1963; 41(4):629–36.

Ageing bottlenose dolphins via pectoral fin radiography

PLOS ONE | https://doi.org/10.1371/journal.pone.0222722 September 26, 2019 24 / 25

https://doi.org/10.1093/ilar/ilt013
http://www.ncbi.nlm.nih.gov/pubmed/23904528
https://doi.org/10.1093/rheumatology/keh534
http://www.ncbi.nlm.nih.gov/pubmed/15728421
http://www.ncbi.nlm.nih.gov/pubmed/12935635
http://www.ncbi.nlm.nih.gov/pubmed/9365183
https://doi.org/10.1093/tropej/46.3.132
http://www.ncbi.nlm.nih.gov/pubmed/10893912
https://doi.org/10.1007/s11832-013-0544-1
http://www.ncbi.nlm.nih.gov/pubmed/24432108
https://doi.org/10.1002/ajpa.1330350312
https://doi.org/10.1002/ajpa.1330350312
http://www.ncbi.nlm.nih.gov/pubmed/4332702
https://doi.org/10.14219/jada.archive.1970.0173
https://doi.org/10.14219/jada.archive.1970.0173
http://www.ncbi.nlm.nih.gov/pubmed/4316671
https://doi.org/10.1021/es403610f
http://www.ncbi.nlm.nih.gov/pubmed/24350796
https://doi.org/10.1371/journal.pone.0222722


63. McMillan CJ, Griffon DJ, Marks SL, Mauldin GE. Dietary-related skeletal changes in a Shetland Sheep-

dog puppy. Journal of the American Animal Hospital Association. 2006; 42(1):57–64. https://doi.org/10.

5326/0420057 PMID: 16397196

64. Oginni LM, Sharp CA, Badru OS, Risteli J, Davie MWJ, Worsfold M. Radiological and biochemical reso-

lution of nutritional rickets with calcium. Archives of disease in childhood. 2003; 88(9):812–7. https://doi.

org/10.1136/adc.88.9.812 PMID: 12937108

65. Lanham SA, Bertram C, Cooper C, Oreffo RO. Animal models of maternal nutrition and altered offspring

bone structure–bone development across the lifecourse. Eur Cell Mater. 2011; 22:321–32. PMID:

22116650

66. Holick MF. Resurrection of vitamin D deficiency and rickets. The Journal of clinical investigation. 2006;

116(8):2062–72. https://doi.org/10.1172/JCI29449 PMID: 16886050

67. Lewis M, Roberts C. Growing pains: the interpretation of stress indicators. International Journal of

Osteoarchaeology. 1997; 7(6):581–6.

68. Byers S. Calculation of age at formation of radiopaque transverse lines. American journal of physical

anthropology. 1991; 85(3):339–43. https://doi.org/10.1002/ajpa.1330850314 PMID: 1897606

69. Smith CR, Rowles TK, Hart LB, Townsend FI, Wells RS, Zolman ES, et al. Slow recovery of Barataria

Bay dolphin health following the Deepwater Horizon oil spill (2013–2014), with evidence of persistent

lung disease and impaired stress response. Endangered Species Research. 2017; 33:127–42.

70. Schaefer F, Seidel C, Binding A, Gasser T, Largo RH, Prader A, et al. Pubertal growth in chronic renal

failure. Pediatric Research. 1990; 28(1):5. https://doi.org/10.1203/00006450-199007000-00002 PMID:

2377395

71. Cole AL, Webb L, Cole TJ. Bone age estimation: a comparison of methods. The British journal of radiol-

ogy. 1988; 61(728):683–6. https://doi.org/10.1259/0007-1285-61-728-683 PMID: 3416108

72. Kim JR, Shim WH, Yoon HM, Hong SH, Lee JS, Cho YA, et al. Computerized Bone Age Estimation

Using Deep Learning Based Program: Evaluation of the Accuracy and Efficiency. American Journal of

Roentgenology. 2017; 209(6):1374–80. https://doi.org/10.2214/AJR.17.18224 PMID: 28898126

73. George J, Nagendran J, Azmi K. Comparison study of growth plate fusion using MRI versus plain radio-

graphs as used in age determination for exclusion of overaged football players. Br J Sports Med. 2012;

46(4):273–8. https://doi.org/10.1136/bjsm.2010.074948 PMID: 21173009

Ageing bottlenose dolphins via pectoral fin radiography

PLOS ONE | https://doi.org/10.1371/journal.pone.0222722 September 26, 2019 25 / 25

https://doi.org/10.5326/0420057
https://doi.org/10.5326/0420057
http://www.ncbi.nlm.nih.gov/pubmed/16397196
https://doi.org/10.1136/adc.88.9.812
https://doi.org/10.1136/adc.88.9.812
http://www.ncbi.nlm.nih.gov/pubmed/12937108
http://www.ncbi.nlm.nih.gov/pubmed/22116650
https://doi.org/10.1172/JCI29449
http://www.ncbi.nlm.nih.gov/pubmed/16886050
https://doi.org/10.1002/ajpa.1330850314
http://www.ncbi.nlm.nih.gov/pubmed/1897606
https://doi.org/10.1203/00006450-199007000-00002
http://www.ncbi.nlm.nih.gov/pubmed/2377395
https://doi.org/10.1259/0007-1285-61-728-683
http://www.ncbi.nlm.nih.gov/pubmed/3416108
https://doi.org/10.2214/AJR.17.18224
http://www.ncbi.nlm.nih.gov/pubmed/28898126
https://doi.org/10.1136/bjsm.2010.074948
http://www.ncbi.nlm.nih.gov/pubmed/21173009
https://doi.org/10.1371/journal.pone.0222722

