
2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5973

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 1
https://iscap.us/proceedings/

An IoT Based New Platform for
Teaching Tiny Machine Learning

Juefei Yuan

jyuan@semo.edu

Sam Elfrink
selfrink3s@semo.edu

Zhouzhou Li

zli2@semo.edu

The Deparment of Computer Science

Southeast Missouri State University

Cape Girardeau, MO 63701, U.S.

Kedai Cheng
kcheng@unca.edu

The Deparment of Mathematics and Statistics
University of North Carolina at Asheville

Asheville, NC 28804, U.S.

Qiuyu Han
2003138@hlju.edu.cn

Heilongjiang University
Harbin, Heilongjiang, CN

Abstract

The widespread presence of sensor-rich intelligent edge devices, such as mobile phones and IoT
gadgets, is evident in our daily lives. By integrating artificial intelligence (AI) with these devices, we can
unlock a myriad of real-world applications, from smart homes and retail solutions to autonomous driving
and beyond. However, state-of-the-art deep learning AI frameworks/ systems often require massive
resources (e.g., large labeled datasets, high-performance computational resources, and many AI
experts) for training and testing. This hinders the applications of these powerful deep learning AI

systems on edge devices. In this paper, we introduce an economical and user-friendly web application

platform, termed ESP32-CAM, into the coursework. This platform is characterized as an Internet of
Things (IoT) device. Furthermore, we integrate a Tiny Machine Learning (TinyML) – based neural
network model, which is optimized for the limited computational capabilities of IoT devices while
minimally impacting the performance, into this device with the specific objective of detecting human
emotions. The integration of this platform and knowledge of TinyML offers students ample opportunities
for hands-on practice within the classroom, fortifying their practical skill set. Additionally, it serves as a

catalyst for sparking their curiosity and engagement in learning about other AI-related disciplines or
topics, including robotics, autonomous driving, 3D scene retrieval, and more.

Keywords: Tiny Machine Learning, Internet of Things, Artificial Intelligence, Human Emotion
Recognition, Face Recognition.

mailto:jyuan@semo.edu
mailto:selfrink3s@semo.edu
mailto:zli2@semo.edu
mailto:kcheng@unca.edu
mailto:2003138@hlju.edu.cn

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5973

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 2
https://iscap.us/proceedings/

1. INTRODUCTION

The rising demand for low-power, low-cost, and

high-performance devices capable of executing
intelligent tasks like object recognition, voice
recognition, and predictive maintenance (Ji Lin, et
al, 2022) has driven advancements in various
technological realms. Notably, Tiny Machine
Learning (TinyML), a sub-category of Artificial
Intelligence, has emerged as a direct response to

these requirements. These devices include smart
cameras, remote monitoring devices, wearable
devices, audio capture hardware, various
sensors, and more. Additionally, advancements in
hardware and software technologies have made it

possible to develop efficient machine learning

models that can run on small devices with limited
memory and processing power.

TinyML is the intersection of different technology
areas and drivers, it sits at the juncture between
Internet of Things (IoT) devices (Peña-López,
2005) (ITU-T, 2012), machine learning and edge

computing, and it is progressing rapidly because
of the combination of multiple drivers (Partha
Pratim Ray, 2022).

TinyML is promising to deliver an efficient and
effective way for Embedded Systems and
Internet-of-Things (IoT) units, which take into

account the computation, memory, and energy

constraints of the devices (Simone Disabato, et
al, 2020)(Ji Lin, et al, 2020). All of these devices
typically contain sensors, processors, and
communication hardware that allow them to
collect and exchange data with other devices,

applications, or cloud-based systems. They can
be used to collect and analyze human behaviors
or personal information data in real time, allowing
for more efficient and effective decision-making
in a wide range of industries.

Another driving force behind the development of

TinyML is the need for privacy and security in the
age of IoT. By deploying machine learning models
on edge devices, data can be processed locally
without the need for cloud connectivity, reducing

the risk of data breaches and cyber attacks
(Mauro Conti, et al, 2018) (Frahim J, et al, 2015)
(Servida F, et al, 2019).

Figure 1 illustrates the scope of TinyML within the
broader context of Artificial Intelligence (AI). AI
forms the overarching umbrella under which
Machine Learning (ML) resides, with Deep
Learning (DL) nested as a subset within ML.

TinyML emerges as a specialized branch of
machine learning that is fine-tuned for operation

on resource-constrained devices, such as those in
the IoT domain. It draws its roots from deep
learning. Through the integration of TinyML, IoT

devices are empowered to execute intelligent
functions locally by utilizing the data they gather,
negating the requirement for significant
computational capabilities.

Figure 1: The Context of TinyML

Unfortunately, when taking into account cost,
performance, and efficiency, finding an
appropriate platform for students to practice
during their coursework proves to be a challenge.
The major concerns include:

▪ The widely-used Convolutional Neural
Networks (CNNs), including ResNet,
InceptionNet, and VGG, necessitate
devices with substantial computational

capabilities.
▪ IoT devices, including smart home

appliances, possess constrained
computational power. They are not
equipped to support CNN models that
demand substantial resources, such as
high-performance computing capabilities.

▪ Implementing traditional machine
learning/ deep learning methods on IoT

devices is a challenging task, as it is

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5973

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 3
https://iscap.us/proceedings/

difficult to do so without compromising a

significant amount of performance.

A well-constructed platform is essential for

students to effectively practice TinyML techniques
on IoT devices with constrained computational
capabilities.

The subsequent sections of this paper are
structured in the following manner. In the
‘Literature Review’ section, we review the

benefits of combining TinyML with IoT devices. In
the ‘Background’ section, the Internet of Things
(IoT) device-based human emotion recognition
platform will be introduced, and its advantages
will be explained. In the ‘Teaching Objectives’

section, the educational aims of the Tiny Machine

Learning course will be explored. Following that,
a compilation of exercises will be presented to
bolster the teaching objectives through the
utilization of the platform. The “Conclusions and
Future Work” section will offer a wrap-up of the
findings and shed light on potential avenues for
future research and course development.

2. LITERATURE REVIEW

The benefits of tiny machine learning are
numerous, and research in this area is ongoing.
One study published in the SIGCSE TS 2022
developed a tiny machine learning educational

tool TinyMLedu. The aim of TinyMLedu is to

establish a global network of researchers and
practitioners who are dedicated to advancing the
field of TinyML in developing countries.
Additionally, the organization strives to create
and disseminate high-quality educational

resources that are open-access and accessible to
people worldwide (Brian Plancher, et al, 2022)
(Harvard Tiny Machine Learning Open Education
Initiative, 2022).

Another study published in the IEEE Internet of
Things Journal evaluated the performance of tiny

machine learning algorithms for human activity
recognition on an embedded device. The results
showed that the algorithms achieved high
accuracy while requiring minimal computational

resources and memory, making them suitable for
deployment on low-power devices (Yang, et al,
2021).

The third study published in the Sensors Journal
developed a low-power hardware platform for
implementing a tiny machine learning system for
real- time fall detection. The results showed that
the system achieved high accuracy and low power

consumption, making it suitable for deployment

in wearable devices for the elderly (Kwon, et al,

2020).

In conclusion, the widespread presence of sensor-

rich intelligent edge devices, including billions of
mobile phones and IoT devices, is prominent in
our everyday lives (Egham UK, 2017) (Frahim J,
et al, 2015). The integration of Artificial
Intelligence (AI) with these edge devices opens
up a plethora of real-world applications spanning
smart homes, smart retail, autonomous driving,

and beyond. However, deploying cutting-edge
deep learning AI frameworks/systems is
resource-intensive, often necessitating large
labeled datasets (Olga Russakovsky, et al, 2015),
high-performance computing resources (NVIDIA,

2023), and a substantial pool of AI experts for

model training and evaluation (Haoyu Ren, et al,
2021). This poses a barrier to implementing these
potent deep learning AI systems on edge devices.
Our TinyML initiative is geared toward enhancing
the efficiency of deep learning AI systems by
minimizing the computational demands, reducing
the number of engineers involved, and utilizing a

small amount of data, all while maintaining
performance. This is aimed at fostering the
burgeoning market of edge AI and the Artificial
Intelligence of Things (AIoT) (Alexander S. Gillis,
2022).

3. BACKGROUND

ESP32-CAM, as shown in Figure 2, is a Web App
built on IoT hardware, offering swift, precise,
and cost-efficient Human Emotion Recognition. A
representative use case/scenario is provided
below:

▪ Initially, new users must register their
facial image with the Web App.
Subsequently, a unique ID is allocated to
the associated face. Once the facial image
is stored in the system, the user no longer
has access to it.

▪ The ESP32-CAM hardware can be

positioned in locations conducive to
capturing human faces, such as near
doors, on walls, or atop desks.

▪ A user stands in front of the ESP32-CAM
hardware. The Web App processes the
input, which encompasses the user's
entire body, to pinpoint the location of the

face. Subsequently, it analyzes the facial
expressions and provides an emotion
recognition prediction for the user.

The ESP32-CAM hardware is priced around $8.00.
When taking into account the ancillary cables and
bridge devices, the total expenditure for a single

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5973

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 4
https://iscap.us/proceedings/

set of practice hardware amounts to

approximately $15.00.

The Web App is primed for deployment by a user
within just 1 minute. Additionally, it boasts a cold

start time of 10 seconds, outpacing all known
platforms in startup speed. It's also worth
highlighting that the Web App is fully open-
source, eliminating the need for instructors to be
concerned about potential Intellectual Property
issues. Moreover, it's easy to maintain and
expand, as ultimately, there are only four source

files to be maintained, two of which are header
files.

In addition to its cost-effectiveness and
commendable performance, another appealing

aspect of this Web App is its ability to integrate
IoT with Artificial Intelligence (AI) methodologies,

including Tiny Machine Learning (TinyML)
techniques

Figure 2: Views of the ESP32-CAM Board

from the Front and Back

Internet of Things
IoT is an emerging technology, and despite the
keen interest shown by many students, a course
covering IoT fundamentals is usually available
only as an elective in degree programs. By

incorporating exercises that utilize IoT devices
into the TinyML course, cutting-edge and valuable
material can be infused into this course that
otherwise focuses on established techniques. This
approach renders it unnecessary for students to

enroll in a full-fledged IoT course to gain exposure

to embedded hardware and wireless
communication.

This IoT hardware-based platform is also
beneficial for students engaging in research on
edge computing, a trending subset of cloud
computing, with an emphasis on tailored

computation for delivering swift and precise
outcomes. The deep learning model, which was
trained on a dataset comprising various human

emotions using high-performance computing

systems, demonstrated impressive efficacy and
its versatility was substantiated (Xiaofeng Lu,
2022) (Ankan Bhattacharyya, et al, 2021).

Nevertheless, when this model is implemented on
an IoT device like the ESP32-CAM, there are
shortcomings in terms of recognition accuracy
and processing speed, signifying an opportunity
for further research and optimization. In one of
the capstone projects, a group of students
discovered that the ESP32-CAM could not

accommodate deep learning models with an
extensive parameter set, and any attempt to
streamline the model by cutting down the number
of parameters led to a severe decline in
recognition accuracy and response time.

Tiny Machine Learning
As previously mentioned, a TinyML model has
been incorporated into the ESP32-CAM web
application. This iteration of TinyML represents an
emerging technology that entails the deployment
of machine learning models, including
streamlined versions of deep learning models,

onto devices with limited resources. The learning
methodologies can be classified into supervised,
semi-supervised, and unsupervised learning, with
human emotion recognition falling under the
category of supervised learning. A majority of
Computer Science and Electrical & Computer
Engineering departments have already

incorporated Machine Learning and Deep

Learning into their course offerings. As a result,
this TinyML course can provide practical
experiences for students, allowing them to apply
and integrate the knowledge they have acquired
from the Machine Learning/Deep Learning

courses in a holistic manner. The interactive
nature of this TinyML model elicited strong
enthusiasm among the students, particularly in
relation to the human emotion recognition
application.

This platform, integrated with TinyML, is also

advantageous for students to undertake research
in transfer learning. In transfer learning, the
existing TinyML model is not modified; instead, a
new learning framework is constructed atop the

pre-existing model. For instance, it can be
employed to extend human emotion recognition
capabilities to include body language recognition.

Additionally, with the ongoing advancement and
proliferation of machine learning, deep learning,
and Tiny Machine Learning models, students
have a wealth of opportunities to keep pace with
cutting-edge research in domains like 3D object

detection, analysis of 3D environments both
indoor and outdoor, self-driving cars, among

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5973

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 5
https://iscap.us/proceedings/

others, leveraging the widespread yet

computationally constrained capabilities of IoT
devices.

4. TEACHING OBJECTIVES

Teaching objectives and outcomes that students
should be able to achieve upon completion of this
course:

1. Understanding of Core Concepts:

▪ Students should gain a solid
understanding of the fundamental
concepts of Machine Learning, Deep
Learning, Tiny Machine Learning, and
Internet of Things (IoT).

▪ Students should be familiar with the

terminology and theory behind
human emotion recognition.

2. Working with IoT Devices:
▪ Students should be able to configure

and use IoT devices, specifically
platforms like ESP32-CAM. The
control panel of the ESP32-CAM web

app is depicted in Figure 3.
▪ Students should understand how

these devices can be integrated with
sensors and actuators.

3. Model Development and Optimization:
▪ Students should be proficient in

developing machine learning models

suitable for emotion recognition.

▪ Students should be able to optimize
these models for deployment on
resource-constrained IoT devices
(TinyML).

▪ Students should know how to perform

transfer learning to enhance or
modify existing models for new
applications.

4. Data Handling and Processing:
▪ Students should be adept at

collecting, processing, and handling
datasets, particularly those related to

human emotions.
▪ Students should understand the

importance of data preprocessing and
be able to employ techniques to clean

and prepare data for training.
5. Implementation and Deployment:

▪ Students should be capable of

implementing TinyML models on IoT
devices.

▪ Students should know how to deploy
a model within an IoT ecosystem,
ensuring efficient communication
between devices.

6. Performance Evaluation:

▪ Students should be able to evaluate

the performance of the emotion
recognition models.

▪ Students should be familiar with

metrics and methods to analyze
model accuracy, speed, and
efficiency, especially in the context of
TinyML.

7. Ethical and Privacy Considerations:
▪ Students should be aware of the

ethical implications and privacy

concerns associated with emotion
recognition and IoT devices.

▪ Students should understand the
responsibilities and best practices in
handling sensitive data.

8. Problem-solving and Innovation:

▪ Students should be able to identify
potential challenges and limitations in
implementing TinyML on IoT devices
for emotion recognition and develop
innovative solutions to address these
issues.

Figure 3: Control panel of the ESP32-CAM
web app

By achieving these objectives, students will be

well-equipped to engage in real-world
applications and research in Tiny Machine
Learning, especially in the context of IoT devices
and human emotion recognition.

5. EXERCISES

Incorporating practical exercises in the course will
enable students to apply the concepts they learn
and gain hands-on experience. There are 10
independent exercises in total that can be

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5973

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 6
https://iscap.us/proceedings/

included in the course and can be categorized into

4 sections

1. The initial pair of exercises focuses on

acquainting students with the fundamentals
of IoT and TinyML. This involves setting up
IoT devices and engaging in data collection
and preprocessing.
a. Setting Up an IoT Device: Students will

set up an IoT device, such as a Raspberry
Pi or an Arduino board, connecting

various sensors to it (like temperature
sensors or cameras).

b. Data Collection and Preprocessing: Using
the setup from the previous exercise,
students will collect a dataset (e.g.,

environmental readings, images, or audio

snippets) and learn preprocessing
techniques suitable for TinyML.

2. Subsequently, the following duo of exercises
delves into model development and
refinement. Students will construct a basic
emotion recognition model and learn how to

optimize it for TinyML.
c. Building a Basic Emotion Recognition

Model: Students will utilize a dataset of
facial expressions or voice modulations to
train a rudimentary emotion detection
model using common machine learning
tools.

d. Optimizing the Model for TinyML: Using

model compression and quantization
techniques, students will refine their
emotion recognition model to make it
lightweight and suitable for deployment
on low-resource IoT devices.

3. Once the students have grasped the

intricacies of TinyML model design, three
exercises centered on deployment and
performance assessment is presented. These
exercises encompass model deployment on
IoT devices, performance evaluation, and an

introduction to transfer learning.
e. Deploying the Model on an IoT Device:

Students will take their optimized
emotion recognition model and deploy it

to the IoT device from the first exercise,
converting the model to the appropriate
format if necessary.

f. Evaluating Model Performance: In a real-
world environment, students will evaluate
how well their deployed model performs
in recognizing emotions, considering
accuracy, speed, and resource utilization.

g. Introduction to Transfer Learning for

TinyML: Using a pre-trained model,
students will learn how to adapt it to a

new but related task by fine-tuning with

a smaller dataset, an essential technique
for TinyML given limited resources.

4. The following three exercises pivot toward
real-world applications and security
considerations. This includes exercises such
as real-time emotion detection,
understanding security and privacy within
IoT, and undertaking innovative projects
among others.

h. Real-time Emotion Detection System:
Building on prior exercises, students will
create a system where the IoT device can
detect and respond to emotions in real-
time, such as changing LED colors based

on detected emotions.

i. IoT Security and Privacy: Students will
explore potential vulnerabilities in their
setups, understanding common attack
vectors in IoT. They will then implement
basic security measures to protect data
and ensure privacy.

j. Innovative Project Design: In a group or

individually, students will conceptualize
and begin the development of a unique
application of TinyML on IoT devices,
incorporating all they have learned. This
could be a smart home application, a
health monitoring system, or any other
innovative idea.

An ancillary project has been crafted to cater to
the interests of several students who expressed a
desire to engage in related research within this
TinyML course, conduct an independent study, or
incorporate it into their capstone course.

In summary, by engaging in these exercises,
students will not only understand the theoretical
concepts but also gain practical skills in applying
Tiny Machine Learning in real-world IoT
applications, particularly in the field of human
emotion recognition.

Figure 4 shows an enumeration of the hardware,
Integrated Development Environment (IDE), and
software that are utilized in the exercises:

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5973

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 7
https://iscap.us/proceedings/

Figure 4: Curriculum Resource
Requirements

Data collection and preprocessing
In the teaching materials for this course, images

depicting human emotions are sourced from Flickr
(FLICKR, 2023) and Google Images (GOOGLE,
2023). These images are classified into two
categories, namely neutral and smiling. Figure 5
and Figure 6 showcase two sets of images, each
containing 10 examples from the respective
categories. The data for each category is divided

into training and testing subsets, with 75%
allocated for training and the remaining 25%

designated for testing. Table 1 provides an
overview of the composition of the training and
testing data.

Figure 5: Example neutral human emotions

images in our dataset.

Figure 6: Example smiling human emotions
images in our dataset.

Images Neutral Smiling

Training 407 524

Testing 135 174

Total 542 698

Table 1: Training and testing information of

our human emotion dataset.

Once the data collection is complete, the first step
in preprocessing involves filtering out images that

are evidently not relevant, for instance, removing
images that do not fall under either the neutral or
smiling categories. Subsequently, data
augmentation techniques are employed to
expand the dataset. This includes employing

geometric transformations and random erasing
among other techniques.

In addition, the face landmark localization
information is acquired through the utilization of
a light weight Human Face Detection Model
(MTMN) (ESP-FACE, 2019), which is based on
MobileNetV2 (Mark Sandler, et al, 2018) and

Multi-task Cascaded Convolution Network
(MTCNN) (Kaipeng Zhang, et al, 2016). The
MTNN is capable of generating five face
landmarks, encompassing information on ten
coordinates corresponding to the left eye, left
corner of the mouth, tip of the nose, right eye,
and right corner of the mouth. Figure 7 shows the

workflow of MTNM.

Figure 7: Workflow of MTNM.

Furthermore, in order to assemble the training
dataset (which necessitates a significantly larger
quantity of images than what can be manually
captured by the ESP32-CAM's built-in camera),
we modified the ESP32-CAM code to

accommodate 1,240 (542 neutral & 698 smiling)
pre-saved face images stored on a micro SD card,
and to output the five face landmarks for each of
these face images.

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5973

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 8
https://iscap.us/proceedings/

Once we have obtained the five face landmarks

for each image, we proceed to calculate the
lengths of ten segments connecting these face
landmarks; for instance, the segment length

between the left and right eye. Figure 8 illustrates
the ten segments derived, with P0 to P4
representing the five face landmarks, and Len0 to
Len9 denoting the ten segments.

Figure 8: 10 segments connecting the 5

landmarks.

Considering that each individual’s facial
landmarks, as well as the segment lengths

between these landmarks, vary, we normalize

this segment data to establish consistency. To
achieve this, we revise Len1 through Len9
employing the formula Len[n] = Len[n] / Len[0],
where n ranges from 1 to 9.

Conclusively, we extract the lengths of nine
segments for each face image and input this data

into our TinyML model.

This section presents an excellent opportunity for
students to learn the ropes of data collection and
preprocessing.

Developing Machine Learning Model

TensorFlow (TENSORFLOW, 2023) is the
framework that we utilize in this course to
develop the our TinyML model. It is an open-
source machine learning framework developed by
the Google Brain team. It was initially released in

2015 and has since become one of the most
widely used libraries for developing machine
learning and deep learning applications.
TensorFlow is a popular choice for both
newcomers and experienced practitioners in the
field.

To accomplish this exercise, students will need to

build a fully connected neural network (NN)
model using TensorFlow first, which generally
involves the following steps:

1. Install TensorFlow: Before starting, the

students need to ensure they have
TensorFlow installed in their working
environment.

2. Import Libraries: The students need to import
TensorFlow and any other necessary libraries

such as Numpy, Matplotlib, etc.
3. Load and Preprocess Data: Load the image

dataset we collected. Typically, datasets are
divided into three parts: training, validation,
and testing. The students also need to

normalize the data, for example by scaling

the pixel values of images to the range [0, 1].
4. Define the NN Architecture: The students

need to create the structure of the Neural
Network. This includes adding input layers,
hidden layers, and output layers. Select the
number of neurons for each layer and choose
activation functions for each layer (such as

ReLU, sigmoid, tanh, etc.).

Figure 9: An example of a neural network

model structure.

In summary, these four steps involve setting up
the development environment by installing
TensorFlow, importing necessary libraries,
loading and preprocessing the data to be used,
and defining the architecture of the neural
network which outlines how it will process the
data. An example of a neural network model

structure is illustrated in Figure 9.

Machine Learning Model Training &
Performance Assessment
After defining the neural network architecture,
students have essentially laid the groundwork for

their model. Students have set up the input,
hidden, and output layers, and defined the
activation functions that will help their network
learn complex patterns. Now, before the students
proceed to train the model with data, it's essential

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5973

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 9
https://iscap.us/proceedings/

to establish how the model will learn from this

data and how its performance will be measured.
This is where compiling the model comes into
play, and it's crucial as it sets up the learning

process. Here the students will define the loss
function to measure how well the model is
performing, and an optimizer which is the
algorithm that the model will use to improve
itself. Essentially, compiling bridges the gap
between the architecture the students have
defined and the training phase that comes next.

Here below are the steps that the students need
to follow:

1. Install Compile the Model: Before training,

the students need to compile the model. This

step involves specifying the loss function

(which measures how far the predictions are
from the true values), the optimizer (which is
the algorithm used to perform the weight
updates), and the metrics that the students
want to track.

2. Training the Model: Train the model using the
training data. Choose the number of epochs

(iterations over the entire dataset) and the
batch size (the number of samples that are
used to calculate a single update of the
weights).

3. Model Evaluation and Tuning: Evaluate the
model on a validation set. If the performance
is not satisfactory, the students may need to

tweak the architecture or hyperparameters,

or consider techniques like dropout or batch
normalization to improve performance.

4. Testing the Model: Once the students are
satisfied with the model's performance on the
validation set, perform a final evaluation on

the test set.
5. Make Predictions: Use the trained model to

make predictions on new, unseen data, e.g.,
testing data.

6. Save the Model: After training and
evaluating, save the model so it can be
reused later without retraining.

Figure 10: An example of a neural network
model structure.

In summary, these steps are centered around
training the neural network, assessing its
performance, making adjustments if necessary,

using it for predictions, and saving the final

product for future use. Figure 10 shows the loss
values and accuracies for the training, validation,
and testing datasets of the NN model after 300

epoch training. It is evident from the results that
the trained NN model achieves a prediction
accuracy of 82.6% on the testing dataset, which
comprises data that the model has not seen
before.

Transformation of a Fully Connected Neural

Network into an Optimized Tiny Machine
Learning Model
Converting a Fully Connected Neural Network
into an Optimized Tiny Machine Learning
(TinyML) Model involves several steps to ensure

that the model is lightweight and efficient

enough to run on resource-constrained devices
like ESP32-CAM. Below is the information for
each step:

1. Pruning: Begin by pruning the neural

network. This means removing neurons or
weights that have little to no effect on the

model’s performance. Pruning helps in
reducing the size of the model without
significantly affecting its accuracy.

2. Quantization: Convert the weights and,
possibly, activations from floating-point to a
lower bit-width integers (e.g., 8-bit integers).
This process reduces the model size and

speeds up inference but might incur a slight

drop in accuracy.
3. Knowledge Distillation: Optionally, students

can use knowledge distillation where the
students train a smaller model to imitate the
behavior of the larger, trained model. This

way, the smaller model learns to mimic the
performance of the larger model but with
fewer parameters.

4. Fine-tuning: After pruning and quantization,
it is often beneficial to fine-tune the model
further with a smaller learning rate to recover
any loss in performance that might have

occurred due to the size reduction
techniques.

5. Model Conversion: Convert the optimized
model to a format that is compatible with the

target platform. For example, TensorFlow Lite
is a popular format for TinyML models.

6. Optimize for the Target Platform: Some

platforms have specific constraints or
features that can be leveraged for further
optimization. Tailor the model for the specific
characteristics of the target hardware, which
is the ESP32-CAM device we use in this
course.

7. Benchmark and Validate: Before deploying,
it’s crucial to benchmark the TinyML model to

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5973

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 10
https://iscap.us/proceedings/

ensure that it meets the performance and

resource requirements of the target device.
Validate that the model's accuracy is still
within acceptable limits.

Optimizing for TinyML is often an iterative process
and might require several rounds of optimization
and validation to achieve the desired balance
between size, speed, and accuracy. Figure 11
illustrates a comparison between the sizes of the
original Neural Network model and the converted

TinyML model. From the data presented in Figure
11, it is evident that the size of the original Neural
Network model is 63kb, whereas the TinyML
model is significantly smaller at 5kb. This
substantial reduction in size makes the TinyML

model much more appropriate for deployment on

IoT devices.

Figure 11: A comparison between the sizes
of the original Neural Network model and
the converted TinyML model.

Deploy the human emotion recognition Web
application to an ESP32-CAM IoT board &
Performance Assessment

Students will be required to acquire the skills
necessary to deploy a web application onto an IoT
device.

1. The application code is set up within the
Arduino IDE (Arduino, I., 2019), following the
installation of the necessary add-on for the
ESP32 board.

2. Students are required to link the ESP32-CAM
board to a host machine (where the Arduino

IDE is operational), then proceed to cross-
compile the code within Arduino and transfer
the executable from the host to the board.

3. Once reset, the board initiates with the
human emotion recognition web application
prepared and operational.

4. Navigate to a specified URL to access the

application's control panel, where a user can
register a face and subsequently assess if the
board is capable of accurately identifying the
user's emotion.

In this course, teams are composed of 4 or 5
members each. The hardware required for the

exercises includes an ESP32-CAM board, an FTDI
Mini USB to TTL Serial converter, and a mini-USB
cable.

To execute the TinyML model on the ESP32-CAM

IoT board, it is necessary to transform the
TensorFlow Lite model (model.tflite) into a C/C++
source file (model.cc). The ESP32-CAM IoT board

incorporates libraries that facilitate this
conversion. Figure 12 depicts the libraries
needed, along with the commands to perform the
conversion.

Figure 12: Conversion of TensorFlow Lite

Model to C/C++ Source File on ESP32-CAM.

We evaluated the model utilizing a test dataset
comprising 135 neutral facial expressions and

174 smiling faces. The model achieved an overall
accuracy of 79%, which remains the same

performance as the large-size machine learning
model. Figure 13 and Figure 14 depict the
prediction results for a neutral face and a smiling
face respectively. In real-time testing scenarios,
when the ESP32-CAM IoT board camera captures

a human image or detects a person, it computes
the lengths of nine segments between the five
identified landmarks and conducts predictions.

It's imperative to note that during the training
phase, labels were assigned to the facial
expressions: neutral faces were labeled as 0, and

smiling faces as 1. Consequently, the prediction
value for a neutral face should approximate 0,
while for a smiling face, it should be in proximity
to 1. For instance, in Figure 13, the prediction

value for the test image with a neutral face is
0.09, closely aligned with the expected value of

0. Similarly, in Figure 14, the test image with a
smiling face has a prediction value of 0.97, which
is near the anticipated value of 1.

For a majority of the students, this marks their
initial encounter with an IoT device or an
embedded system, leaving them both intrigued

and apprehensive. A well-structured and detailed

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5973

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 11
https://iscap.us/proceedings/

instruction manual can play a pivotal role in

facilitating the prompt completion of this
exercise, instilling confidence in the students as
they learn novel techniques, skills, or methods.

Figure 13: An example of prediction results
for a neutral face in real time

Figure 14: An example of prediction results
for a smiling face in real time

This exercise enables students to delve into the
rudimentary aspects of Tiny Machine Learning

and the development and deployment of IoT
applications. In addition, they get to familiarize
themselves with the essential components of a
web application, which hold the potential to be
deployed on diverse hardware. Although students
might have been exposed to web application

development concepts during their first or second
year, for most, this represents the first instance
of deploying a web application on standalone
physical hardware.

Moreover, this serves as an excellent opportunity
for students to gain hands-on experience with IoT
within the context of a Tiny Machine Learning

course.

Monitor and Maintain the Deployed Model
Monitoring and maintaining the Model is a critical
phase in the machine learning lifecycle,
particularly once the model is deployed in a
production environment. It entails continuously

observing the model’s performance to ensure that
it is still aligned with the desired outcomes and
not degrading over time. This may involve
tracking various metrics and comparing them
against benchmarks or thresholds. Monitoring is

especially important because the data the model

encounters in the real world may evolve, causing
what is known as "model drift". When a significant
discrepancy or degradation in performance is
noticed, the model may require maintenance.
This can include fine-tuning, retraining with fresh
data, or even redesigning the model to adapt to
the new data patterns. Additionally, monitoring

can help in identifying any unexpected behavior
or anomalies which could indicate issues with the
data, the model, or the production environment.
Regular maintenance ensures that the model
remains robust, accurate, and reliable as the
dynamics of the data and environment change.

6. CONCLUSIONS AND FUTURE WORK

In this course, the IoT device employed is the
ESP32-CAM. This device is a versatile and
compact camera module equipped with an ESP32
chip. The ESP32-CAM is particularly well-suited

for applications in IoT due to its integration of Wi-
Fi and Bluetooth capabilities, as well as its
support for image capturing and processing. The
module's small form factor and low power
consumption make it an ideal choice for projects
that require real-time image processing,
especially when deployed in environments with

resource constraints.

The use of the ESP32-CAM in this course
facilitates the hands-on learning of Tiny Machine

Learning in a practical context. Its capacity for
capturing and processing images in real-time is
invaluable for emotion recognition exercises.

Furthermore, its integration capabilities with
other sensors and devices over Wi-Fi and
Bluetooth add layers of complexity and
possibilities, allowing students to develop
multifaceted projects. By working with the
ESP32-CAM, students gain practical experience

and insights into the challenges and opportunities
in implementing TinyML models on IoT devices,

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5973

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 12
https://iscap.us/proceedings/

equipping them for real-world applications and

innovations.

Looking ahead, there are several avenues for

expanding and enhancing the course and its
curriculum. One of the pivotal enhancements
involves enlarging the number of categories in the
emotion dataset to make it more comprehensive.
Human emotions are diverse and extend beyond
neutral and smiling states to include expressions
like anger, sadness, fear, and more. By

incorporating a richer and more varied dataset,
students will be able to develop more
sophisticated and accurate emotion recognition
models. Furthermore, integrating newer IoT
devices and technologies, as well as updating the

course with state-of-the-art TinyML models and

techniques, would ensure that the curriculum
remains abreast with the latest advancements in
the field.

Another essential aspect for future work is the
establishment of collaborations with industry and
academia. This would not only provide students

with real-world datasets and challenges but also
enable them to contribute to ongoing research
and development in emotion recognition and IoT.
In addition, fostering partnerships could facilitate
guest lectures and workshops by experts in the
field, thereby enriching the educational
experience. As technology continues to evolve

rapidly, creating a dynamic, adaptive, and

collaborative learning environment that
integrates diverse emotion datasets and stays in
sync with technological advancements and
industry trends is fundamental in cultivating well-
rounded professionals in the domains of TinyML

and IoT.

 9. REFERENCES

Ankan Bhattacharyya, et al. (2021). A deep

learning model for classifying human facial
expressions from infrared thermal images.

Sci Rep 11, 20696 (2021).
https://doi.org/10.1038/s41598-021-99998-
z

Arduino, I. (2019). Arduino IDE.
https://www.arduino.cc/en/software

Alexander S. Gillis. (2022). Artificial intelligence
of things (AIoT), URL:

https://www.techtarget.com/iotagenda/defin
ition/Artificial-Intelligence-of-Things-AIoT

Brian Plancher, et al. (2022) TinyMLedu: The Tiny
Machine Learning Open Education Initiative.

SIGCSE 2022: Proceedings of the 53rd ACM

Technical Symposium on Computer Science
Education.

Egham UK. (2017). Gartner says 8.4 billion

connected “things” will be in use in 2017, Up
31 percent from 2016. Gartner Inc.

ESP-FACE. (2019). Esp-face.
https://github.com/Yuri-R-Studio/esp-face

FLICKR. (2023). Flickr. https://www.flickr.com/

Frahim J, Pignataro C, Apcar J, Morrow M. (2015)
Securing the internet of things: A proposed

framework. Cisco White Paper.

GOOGLE. (2023). Google images.
https://www.google.com/imghp/

Harvard Tiny Machine Learning Open Education
Initiative. (2022). Tiny Machine Learning
Open Education Initiative (TinyMLedu), URL:

https://tinyml.seas.harvard.edu/

Haoyu Ren, et al. (2021). TinyOL: TinyML with
Online-Learning on Microcontrollers.
International Joint Conference on Neural
Network (IJCNN).

ITU-T Y. (2012). 2060: Overview of the Internet

of things. ITU-T–International

Telecommunication Union.

Ji Lin, et al. (2020) MCUNet: Tiny Deep Learning
on IoT Devices. Computer Vision and Pattern
Recognition, NeurIPS.

Ji Lin, et al. (2022). On-Device Training Under
256KB Memory, MIT, MIT-IBM Watson AI Lab.

Kaipeng Zhang, et al. (2016). Joint Face

Detection and Alignment using Multi-task
Cascaded Convolutional Networks.
Computing Research Repository (CoRR).

Kwon, et al. (2020). A Low-Power Hardware

Platform for Implementing Tiny Machine
Learning Systems for Real-Time Fall

Detection. Sensors.

Mauro Conti, Ali Dehghantanha, Katrin Franke,
Steve Watson. (2018) Internet of Things
Security and Forensics: Challenges and
Opportunities, (Elsevier) Future Generation
Computer Systems Journal.

https://doi.org/10.1038/s41598-021-99998-z
https://doi.org/10.1038/s41598-021-99998-z
https://www.arduino.cc/en/software
https://www.techtarget.com/iotagenda/definition/Artificial-Intelligence-of-Things-AIoT
https://www.techtarget.com/iotagenda/definition/Artificial-Intelligence-of-Things-AIoT
https://www.google.com/imghp/
https://tinyml.seas.harvard.edu/

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5973

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 13
https://iscap.us/proceedings/

Mark Sandler, et al. (2018). Inverted Residuals

and Linear Bottlenecks: Mobile Networks for
Classification, Detection and Segmentation.
Computing Research Repository (CoRR).

NVIDIA. (2023). High Performance Computing
Products and Solutions, URL:
https://www.nvidia.com/en-us/high-
performance-computing/

Olga Russakovsky, et al. (2015) ImageNet Large
Scale Visual Recognition Challenge. IJCV.

Partha Pratim Ray, et al. (2022) A review on

TinyML: State-of-the-art and prospects,
Journal of King Saud University - Computer

and Information Sciences.

Peña-López I. (2005). ITU Internet report 2005:
the internet of things.

Simone Disabato, et al. (2020) Incremental On-

Device Tiny Machine Learning,
AIChallengeIoT '20: Proceedings of the 2nd
International Workshop on Challenges in

Artificial Intelligence and Machine Learning

for Internet of Things.

Servida F, Casey E. (2019) IoT forensic
challenges and opportunities for digital

traces. Digital Investigation.

TENSORFLOW. (2023). TensorFlow.
https://www.tensorflow.org/

Xiaofeng Lu. (2022). Deep Learning Based
Emotion Recognition and Visualization of
Figural Representation. Front Psychol. 2022
Jan 6;12:818833. doi:

10.3389/fpsyg.2021.818833.

Yang, et al. (2021). Performance evaluation of
tiny machine learning algorithms for human
activity recognition on embedded devices.
IEEE Internet of Things Journal.

https://www.nvidia.com/en-us/high-performance-computing/
https://www.nvidia.com/en-us/high-performance-computing/
https://www.tensorflow.org/

