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Abstract  

 

The widespread presence of sensor-rich intelligent edge devices, such as mobile phones and IoT 
gadgets, is evident in our daily lives. By integrating artificial intelligence (AI) with these devices, we can 
unlock a myriad of real-world applications, from smart homes and retail solutions to autonomous driving 
and beyond. However, state-of-the-art deep learning AI frameworks/ systems often require massive 
resources (e.g., large labeled datasets, high-performance computational resources, and many AI 
experts) for training and testing. This hinders the applications of these powerful deep learning AI 

systems on edge devices. In this paper, we introduce an economical and user-friendly web application 

platform, termed ESP32-CAM, into the coursework. This platform is characterized as an Internet of 
Things (IoT) device. Furthermore, we integrate a Tiny Machine Learning (TinyML) – based neural 
network model, which is optimized for the limited computational capabilities of IoT devices while 
minimally impacting the performance, into this device with the specific objective of detecting human 
emotions. The integration of this platform and knowledge of TinyML offers students ample opportunities 
for hands-on practice within the classroom, fortifying their practical skill set. Additionally, it serves as a 

catalyst for sparking their curiosity and engagement in learning about other AI-related disciplines or 
topics, including robotics, autonomous driving, 3D scene retrieval, and more. 
 
Keywords: Tiny Machine Learning, Internet of Things, Artificial Intelligence, Human Emotion 
Recognition, Face Recognition. 
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1. INTRODUCTION 
 
The rising demand for low-power, low-cost, and 

high-performance devices capable of executing 
intelligent tasks like object recognition, voice 
recognition, and predictive maintenance (Ji Lin, et 
al, 2022) has driven advancements in various 
technological realms. Notably, Tiny Machine 
Learning (TinyML), a sub-category of Artificial 
Intelligence, has emerged as a direct response to 

these requirements. These devices include smart 
cameras, remote monitoring devices, wearable 
devices, audio capture hardware, various 
sensors, and more. Additionally, advancements in 
hardware and software technologies have made it 

possible to develop efficient machine learning 

models that can run on small devices with limited 
memory and processing power. 
 
TinyML is the intersection of different technology 
areas and drivers, it sits at the juncture between 
Internet of Things (IoT) devices (Peña-López, 
2005) (ITU-T, 2012), machine learning and edge 

computing, and it is progressing rapidly because 
of the combination of multiple drivers (Partha 
Pratim Ray, 2022). 
 
TinyML is promising to deliver an efficient and 
effective way for Embedded Systems and 
Internet-of-Things (IoT) units, which take into 

account the computation, memory, and energy 

constraints of the devices (Simone Disabato, et 
al, 2020)( Ji Lin, et al, 2020). All of these devices 
typically contain sensors, processors, and 
communication hardware that allow them to 
collect and exchange data with other devices, 

applications, or cloud-based systems. They can 
be used to collect and analyze human behaviors 
or personal information data in real time, allowing 
for more efficient and effective decision-making 
in a wide range of industries.  
 
Another driving force behind the development of 

TinyML is the need for privacy and security in the 
age of IoT. By deploying machine learning models 
on edge devices, data can be processed locally 
without the need for cloud connectivity, reducing 

the risk of data breaches and cyber attacks 
(Mauro Conti, et al, 2018) (Frahim J, et al, 2015) 
(Servida F, et al, 2019). 

 
Figure 1 illustrates the scope of TinyML within the 
broader context of Artificial Intelligence (AI). AI 
forms the overarching umbrella under which 
Machine Learning (ML) resides, with Deep 
Learning (DL) nested as a subset within ML. 

TinyML emerges as a specialized branch of 
machine learning that is fine-tuned for operation 

on resource-constrained devices, such as those in 
the IoT domain. It draws its roots from deep 
learning. Through the integration of TinyML, IoT 

devices are empowered to execute intelligent 
functions locally by utilizing the data they gather, 
negating the requirement for significant 
computational capabilities. 
 

 
 

Figure 1: The Context of TinyML 
 
Unfortunately, when taking into account cost, 
performance, and efficiency, finding an 
appropriate platform for students to practice 
during their coursework proves to be a challenge. 
The major concerns include: 

▪ The widely-used Convolutional Neural 
Networks (CNNs), including ResNet, 
InceptionNet, and VGG, necessitate 
devices with substantial computational 

capabilities. 
▪ IoT devices, including smart home 

appliances, possess constrained 
computational power. They are not 
equipped to support CNN models that 
demand substantial resources, such as 
high-performance computing capabilities. 

▪ Implementing traditional machine 
learning/ deep learning methods on IoT 

devices is a challenging task, as it is 
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difficult to do so without compromising a 

significant amount of performance. 
 
A well-constructed platform is essential for 

students to effectively practice TinyML techniques 
on IoT devices with constrained computational 
capabilities. 
 
The subsequent sections of this paper are 
structured in the following manner. In the 
‘Literature Review’ section, we review the 

benefits of combining TinyML with IoT devices. In 
the ‘Background’ section, the Internet of Things 
(IoT) device-based human emotion recognition 
platform will be introduced, and its advantages 
will be explained. In the ‘Teaching Objectives’ 

section, the educational aims of the Tiny Machine 

Learning course will be explored. Following that, 
a compilation of exercises will be presented to 
bolster the teaching objectives through the 
utilization of the platform. The “Conclusions and 
Future Work” section will offer a wrap-up of the 
findings and shed light on potential avenues for 
future research and course development. 

 
2. LITERATURE REVIEW 

 
The benefits of tiny machine learning are 
numerous, and research in this area is ongoing. 
One study published in the SIGCSE TS 2022 
developed a tiny machine learning educational 

tool TinyMLedu. The aim of TinyMLedu is to 

establish a global network of researchers and 
practitioners who are dedicated to advancing the 
field of TinyML in developing countries. 
Additionally, the organization strives to create 
and disseminate high-quality educational 

resources that are open-access and accessible to 
people worldwide (Brian Plancher, et al, 2022) 
(Harvard Tiny Machine Learning Open Education 
Initiative, 2022). 
 
Another study published in the IEEE Internet of 
Things Journal evaluated the performance of tiny 

machine learning algorithms for human activity 
recognition on an embedded device. The results 
showed that the algorithms achieved high 
accuracy while requiring minimal computational 

resources and memory, making them suitable for 
deployment on low-power devices (Yang, et al, 
2021). 

 
The third study published in the Sensors Journal 
developed a low-power hardware platform for 
implementing a tiny machine learning system for 
real- time fall detection. The results showed that 
the system achieved high accuracy and low power 

consumption, making it suitable for deployment 

in wearable devices for the elderly (Kwon, et al, 

2020). 
 
In conclusion, the widespread presence of sensor-

rich intelligent edge devices, including billions of 
mobile phones and IoT devices, is prominent in 
our everyday lives (Egham UK, 2017) (Frahim J, 
et al, 2015). The integration of Artificial 
Intelligence (AI) with these edge devices opens 
up a plethora of real-world applications spanning 
smart homes, smart retail, autonomous driving, 

and beyond. However, deploying cutting-edge 
deep learning AI frameworks/systems is 
resource-intensive, often necessitating large 
labeled datasets (Olga Russakovsky, et al, 2015), 
high-performance computing resources (NVIDIA, 

2023), and a substantial pool of AI experts for 

model training and evaluation (Haoyu Ren, et al, 
2021). This poses a barrier to implementing these 
potent deep learning AI systems on edge devices. 
Our TinyML initiative is geared toward enhancing 
the efficiency of deep learning AI systems by 
minimizing the computational demands, reducing 
the number of engineers involved, and utilizing a 

small amount of data, all while maintaining 
performance. This is aimed at fostering the 
burgeoning market of edge AI and the Artificial 
Intelligence of Things (AIoT) (Alexander S. Gillis, 
2022). 
 

3. BACKGROUND 

 

ESP32-CAM, as shown in Figure 2, is a Web App 
built on IoT hardware, offering swift, precise, 
and cost-efficient Human Emotion Recognition. A 
representative use case/scenario is provided 
below: 

▪ Initially, new users must register their 
facial image with the Web App. 
Subsequently, a unique ID is allocated to 
the associated face. Once the facial image 
is stored in the system, the user no longer 
has access to it. 

▪ The ESP32-CAM hardware can be 

positioned in locations conducive to 
capturing human faces, such as near 
doors, on walls, or atop desks. 

▪ A user stands in front of the ESP32-CAM 
hardware. The Web App processes the 
input, which encompasses the user's 
entire body, to pinpoint the location of the 

face. Subsequently, it analyzes the facial 
expressions and provides an emotion 
recognition prediction for the user. 

The ESP32-CAM hardware is priced around $8.00. 
When taking into account the ancillary cables and 
bridge devices, the total expenditure for a single 
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set of practice hardware amounts to 

approximately $15.00. 

The Web App is primed for deployment by a user 
within just 1 minute. Additionally, it boasts a cold 

start time of 10 seconds, outpacing all known 
platforms in startup speed. It's also worth 
highlighting that the Web App is fully open-
source, eliminating the need for instructors to be 
concerned about potential Intellectual Property 
issues. Moreover, it's easy to maintain and 
expand, as ultimately, there are only four source 

files to be maintained, two of which are header 
files. 

In addition to its cost-effectiveness and 
commendable performance, another appealing 

aspect of this Web App is its ability to integrate 
IoT with Artificial Intelligence (AI) methodologies, 

including Tiny Machine Learning (TinyML) 
techniques 

 

 

Figure 2: Views of the ESP32-CAM Board 

from the Front and Back 
 
Internet of Things 
IoT is an emerging technology, and despite the 
keen interest shown by many students, a course 
covering IoT fundamentals is usually available 
only as an elective in degree programs. By 

incorporating exercises that utilize IoT devices 
into the TinyML course, cutting-edge and valuable 
material can be infused into this course that 
otherwise focuses on established techniques. This 
approach renders it unnecessary for students to 

enroll in a full-fledged IoT course to gain exposure 

to embedded hardware and wireless 
communication.  
 
This IoT hardware-based platform is also 
beneficial for students engaging in research on 
edge computing, a trending subset of cloud 
computing, with an emphasis on tailored 

computation for delivering swift and precise 
outcomes. The deep learning model, which was 
trained on a dataset comprising various human 

emotions using high-performance computing 

systems, demonstrated impressive efficacy and 
its versatility was substantiated (Xiaofeng Lu, 
2022) (Ankan Bhattacharyya, et al, 2021). 

Nevertheless, when this model is implemented on 
an IoT device like the ESP32-CAM, there are 
shortcomings in terms of recognition accuracy 
and processing speed, signifying an opportunity 
for further research and optimization. In one of 
the capstone projects, a group of students 
discovered that the ESP32-CAM could not 

accommodate deep learning models with an 
extensive parameter set, and any attempt to 
streamline the model by cutting down the number 
of parameters led to a severe decline in 
recognition accuracy and response time. 

 

Tiny Machine Learning 
As previously mentioned, a TinyML model has 
been incorporated into the ESP32-CAM web 
application. This iteration of TinyML represents an 
emerging technology that entails the deployment 
of machine learning models, including 
streamlined versions of deep learning models, 

onto devices with limited resources. The learning 
methodologies can be classified into supervised, 
semi-supervised, and unsupervised learning, with 
human emotion recognition falling under the 
category of supervised learning. A majority of 
Computer Science and Electrical & Computer 
Engineering departments have already 

incorporated Machine Learning and Deep 

Learning into their course offerings. As a result, 
this TinyML course can provide practical 
experiences for students, allowing them to apply 
and integrate the knowledge they have acquired 
from the Machine Learning/Deep Learning 

courses in a holistic manner. The interactive 
nature of this TinyML model elicited strong 
enthusiasm among the students, particularly in 
relation to the human emotion recognition 
application. 
 
This platform, integrated with TinyML, is also 

advantageous for students to undertake research 
in transfer learning. In transfer learning, the 
existing TinyML model is not modified; instead, a 
new learning framework is constructed atop the 

pre-existing model. For instance, it can be 
employed to extend human emotion recognition 
capabilities to include body language recognition. 

 
Additionally, with the ongoing advancement and 
proliferation of machine learning, deep learning, 
and Tiny Machine Learning models, students 
have a wealth of opportunities to keep pace with 
cutting-edge research in domains like 3D object 

detection, analysis of 3D environments both 
indoor and outdoor, self-driving cars, among 
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others, leveraging the widespread yet 

computationally constrained capabilities of IoT 
devices. 
 

4. TEACHING OBJECTIVES 
 
Teaching objectives and outcomes that students 
should be able to achieve upon completion of this 
course: 
 
1. Understanding of Core Concepts: 

▪ Students should gain a solid 
understanding of the fundamental 
concepts of Machine Learning, Deep 
Learning, Tiny Machine Learning, and 
Internet of Things (IoT). 

▪ Students should be familiar with the 

terminology and theory behind 
human emotion recognition. 

2. Working with IoT Devices: 
▪ Students should be able to configure 

and use IoT devices, specifically 
platforms like ESP32-CAM. The 
control panel of the ESP32-CAM web 

app is depicted in Figure 3. 
▪ Students should understand how 

these devices can be integrated with 
sensors and actuators. 

3. Model Development and Optimization: 
▪ Students should be proficient in 

developing machine learning models 

suitable for emotion recognition. 

▪ Students should be able to optimize 
these models for deployment on 
resource-constrained IoT devices 
(TinyML). 

▪ Students should know how to perform 

transfer learning to enhance or 
modify existing models for new 
applications. 

4. Data Handling and Processing: 
▪ Students should be adept at 

collecting, processing, and handling 
datasets, particularly those related to 

human emotions. 
▪ Students should understand the 

importance of data preprocessing and 
be able to employ techniques to clean 

and prepare data for training. 
5. Implementation and Deployment: 

▪ Students should be capable of 

implementing TinyML models on IoT 
devices. 

▪ Students should know how to deploy 
a model within an IoT ecosystem, 
ensuring efficient communication 
between devices. 

6. Performance Evaluation: 

▪ Students should be able to evaluate 

the performance of the emotion 
recognition models. 

▪ Students should be familiar with 

metrics and methods to analyze 
model accuracy, speed, and 
efficiency, especially in the context of 
TinyML. 

7. Ethical and Privacy Considerations: 
▪ Students should be aware of the 

ethical implications and privacy 

concerns associated with emotion 
recognition and IoT devices. 

▪ Students should understand the 
responsibilities and best practices in 
handling sensitive data. 

8. Problem-solving and Innovation: 

▪ Students should be able to identify 
potential challenges and limitations in 
implementing TinyML on IoT devices 
for emotion recognition and develop 
innovative solutions to address these 
issues. 

 

 

Figure 3: Control panel of the ESP32-CAM 
web app 

 

By achieving these objectives, students will be 

well-equipped to engage in real-world 
applications and research in Tiny Machine 
Learning, especially in the context of IoT devices 
and human emotion recognition. 
 

5. EXERCISES 

 
Incorporating practical exercises in the course will 
enable students to apply the concepts they learn 
and gain hands-on experience. There are 10 
independent exercises in total that can be 
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included in the course and can be categorized into 

4 sections 
 
1. The initial pair of exercises focuses on 

acquainting students with the fundamentals 
of IoT and TinyML. This involves setting up 
IoT devices and engaging in data collection 
and preprocessing. 
a. Setting Up an IoT Device: Students will 

set up an IoT device, such as a Raspberry 
Pi or an Arduino board, connecting 

various sensors to it (like temperature 
sensors or cameras). 

b. Data Collection and Preprocessing: Using 
the setup from the previous exercise, 
students will collect a dataset (e.g., 

environmental readings, images, or audio 

snippets) and learn preprocessing 
techniques suitable for TinyML. 
 

2. Subsequently, the following duo of exercises 
delves into model development and 
refinement. Students will construct a basic 
emotion recognition model and learn how to 

optimize it for TinyML. 
c. Building a Basic Emotion Recognition 

Model: Students will utilize a dataset of 
facial expressions or voice modulations to 
train a rudimentary emotion detection 
model using common machine learning 
tools. 

d. Optimizing the Model for TinyML: Using 

model compression and quantization 
techniques, students will refine their 
emotion recognition model to make it 
lightweight and suitable for deployment 
on low-resource IoT devices. 

 
3. Once the students have grasped the 

intricacies of TinyML model design, three 
exercises centered on deployment and 
performance assessment is presented. These 
exercises encompass model deployment on 
IoT devices, performance evaluation, and an 

introduction to transfer learning. 
e. Deploying the Model on an IoT Device: 

Students will take their optimized 
emotion recognition model and deploy it 

to the IoT device from the first exercise, 
converting the model to the appropriate 
format if necessary. 

f. Evaluating Model Performance: In a real-
world environment, students will evaluate 
how well their deployed model performs 
in recognizing emotions, considering 
accuracy, speed, and resource utilization. 

g. Introduction to Transfer Learning for 

TinyML: Using a pre-trained model, 
students will learn how to adapt it to a 

new but related task by fine-tuning with 

a smaller dataset, an essential technique 
for TinyML given limited resources. 
 

4. The following three exercises pivot toward 
real-world applications and security 
considerations. This includes exercises such 
as real-time emotion detection, 
understanding security and privacy within 
IoT, and undertaking innovative projects 
among others.  

h. Real-time Emotion Detection System: 
Building on prior exercises, students will 
create a system where the IoT device can 
detect and respond to emotions in real-
time, such as changing LED colors based 

on detected emotions. 

i. IoT Security and Privacy: Students will 
explore potential vulnerabilities in their 
setups, understanding common attack 
vectors in IoT. They will then implement 
basic security measures to protect data 
and ensure privacy. 

j. Innovative Project Design: In a group or 

individually, students will conceptualize 
and begin the development of a unique 
application of TinyML on IoT devices, 
incorporating all they have learned. This 
could be a smart home application, a 
health monitoring system, or any other 
innovative idea. 

 

An ancillary project has been crafted to cater to 
the interests of several students who expressed a 
desire to engage in related research within this 
TinyML course, conduct an independent study, or 
incorporate it into their capstone course. 

 
In summary, by engaging in these exercises, 
students will not only understand the theoretical 
concepts but also gain practical skills in applying 
Tiny Machine Learning in real-world IoT 
applications, particularly in the field of human 
emotion recognition. 

 
Figure 4 shows an enumeration of the hardware, 
Integrated Development Environment (IDE), and 
software that are utilized in the exercises: 
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Figure 4: Curriculum Resource 
Requirements 

 
Data collection and preprocessing 
In the teaching materials for this course, images 

depicting human emotions are sourced from Flickr 
(FLICKR, 2023) and Google Images (GOOGLE, 
2023). These images are classified into two 
categories, namely neutral and smiling. Figure 5 
and Figure 6 showcase two sets of images, each 
containing 10 examples from the respective 
categories. The data for each category is divided 

into training and testing subsets, with 75% 
allocated for training and the remaining 25% 

designated for testing. Table 1 provides an 
overview of the composition of the training and 
testing data. 
 

 
Figure 5: Example neutral human emotions 

images in our dataset. 
 

 
 

Figure 6: Example smiling human emotions 
images in our dataset. 

Images Neutral Smiling 

Training 407 524 

Testing 135 174 

Total 542 698 

 
Table 1: Training and testing information of 

our human emotion dataset. 
 
Once the data collection is complete, the first step 
in preprocessing involves filtering out images that 

are evidently not relevant, for instance, removing 
images that do not fall under either the neutral or 
smiling categories. Subsequently, data 
augmentation techniques are employed to 
expand the dataset. This includes employing 

geometric transformations and random erasing 
among other techniques.  

 
In addition, the face landmark localization 
information is acquired through the utilization of 
a light weight Human Face Detection Model 
(MTMN) (ESP-FACE, 2019), which is based on 
MobileNetV2 (Mark Sandler, et al, 2018) and 

Multi-task Cascaded Convolution Network 
(MTCNN) (Kaipeng Zhang, et al, 2016). The 
MTNN is capable of generating five face 
landmarks, encompassing information on ten 
coordinates corresponding to the left eye, left 
corner of the mouth, tip of the nose, right eye, 
and right corner of the mouth. Figure 7 shows the 

workflow of MTNM. 

 

 
 

Figure 7: Workflow of MTNM. 

 
Furthermore, in order to assemble the training 
dataset (which necessitates a significantly larger 
quantity of images than what can be manually 
captured by the ESP32-CAM's built-in camera), 
we modified the ESP32-CAM code to 

accommodate 1,240 (542 neutral & 698 smiling) 
pre-saved face images stored on a micro SD card, 
and to output the five face landmarks for each of 
these face images. 
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Once we have obtained the five face landmarks 

for each image, we proceed to calculate the 
lengths of ten segments connecting these face 
landmarks; for instance, the segment length 

between the left and right eye. Figure 8 illustrates 
the ten segments derived, with P0 to P4 
representing the five face landmarks, and Len0 to 
Len9 denoting the ten segments.  
 

  
Figure 8: 10 segments connecting the 5 

landmarks. 
 
Considering that each individual’s facial 
landmarks, as well as the segment lengths 

between these landmarks, vary, we normalize 

this segment data to establish consistency. To 
achieve this, we revise Len1 through Len9 
employing the formula Len[n] = Len[n] / Len[0], 
where n ranges from 1 to 9. 
 
Conclusively, we extract the lengths of nine 
segments for each face image and input this data 

into our TinyML model. 
 
This section presents an excellent opportunity for 
students to learn the ropes of data collection and 
preprocessing. 

 

 
Developing Machine Learning Model 

TensorFlow (TENSORFLOW, 2023) is the 
framework that we utilize in this course to 
develop the our TinyML model. It is an open-
source machine learning framework developed by 
the Google Brain team. It was initially released in 

2015 and has since become one of the most 
widely used libraries for developing machine 
learning and deep learning applications.  
TensorFlow is a popular choice for both 
newcomers and experienced practitioners in the 
field.  

To accomplish this exercise, students will need to 

build a fully connected neural network (NN) 
model using TensorFlow first, which generally 
involves the following steps: 

 
1. Install TensorFlow: Before starting, the 

students need to ensure they have 
TensorFlow installed in their working 
environment. 

2. Import Libraries: The students need to import 
TensorFlow and any other necessary libraries 

such as Numpy, Matplotlib, etc. 
3. Load and Preprocess Data: Load the image 

dataset we collected. Typically, datasets are 
divided into three parts: training, validation, 
and testing. The students also need to 

normalize the data, for example by scaling 

the pixel values of images to the range [0, 1]. 
4. Define the NN Architecture: The students 

need to create the structure of the Neural 
Network. This includes adding input layers, 
hidden layers, and output layers. Select the 
number of neurons for each layer and choose 
activation functions for each layer (such as 

ReLU, sigmoid, tanh, etc.). 
 

 
Figure 9: An example of a neural network 

model structure. 
 

In summary, these four steps involve setting up 
the development environment by installing 
TensorFlow, importing necessary libraries, 
loading and preprocessing the data to be used, 
and defining the architecture of the neural 
network which outlines how it will process the 
data. An example of a neural network model 

structure is illustrated in Figure 9. 
 
Machine Learning Model Training & 
Performance Assessment 
After defining the neural network architecture, 
students have essentially laid the groundwork for 

their model. Students have set up the input, 
hidden, and output layers, and defined the 
activation functions that will help their network 
learn complex patterns. Now, before the students 
proceed to train the model with data, it's essential 
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to establish how the model will learn from this 

data and how its performance will be measured. 
This is where compiling the model comes into 
play, and it's crucial as it sets up the learning 

process. Here the students will define the loss 
function to measure how well the model is 
performing, and an optimizer which is the 
algorithm that the model will use to improve 
itself. Essentially, compiling bridges the gap 
between the architecture the students have 
defined and the training phase that comes next. 

Here below are the steps that the students need 
to follow: 
 
1. Install Compile the Model: Before training, 

the students need to compile the model. This 

step involves specifying the loss function 

(which measures how far the predictions are 
from the true values), the optimizer (which is 
the algorithm used to perform the weight 
updates), and the metrics that the students 
want to track. 

2. Training the Model: Train the model using the 
training data. Choose the number of epochs 

(iterations over the entire dataset) and the 
batch size (the number of samples that are 
used to calculate a single update of the 
weights). 

3. Model Evaluation and Tuning: Evaluate the 
model on a validation set. If the performance 
is not satisfactory, the students may need to 

tweak the architecture or hyperparameters, 

or consider techniques like dropout or batch 
normalization to improve performance. 

4. Testing the Model: Once the students are 
satisfied with the model's performance on the 
validation set, perform a final evaluation on 

the test set. 
5. Make Predictions: Use the trained model to 

make predictions on new, unseen data, e.g., 
testing data. 

6. Save the Model: After training and 
evaluating, save the model so it can be 
reused later without retraining. 

 

 
Figure 10: An example of a neural network 
model structure. 
 

In summary, these steps are centered around 
training the neural network, assessing its 
performance, making adjustments if necessary, 

using it for predictions, and saving the final 

product for future use. Figure 10 shows the loss 
values and accuracies for the training, validation, 
and testing datasets of the NN model after 300 

epoch training. It is evident from the results that 
the trained NN model achieves a prediction 
accuracy of 82.6% on the testing dataset, which 
comprises data that the model has not seen 
before. 
 
Transformation of a Fully Connected Neural 

Network into an Optimized Tiny Machine 
Learning Model 
Converting a Fully Connected Neural Network 
into an Optimized Tiny Machine Learning 
(TinyML) Model involves several steps to ensure 

that the model is lightweight and efficient 

enough to run on resource-constrained devices 
like ESP32-CAM. Below is the information for 
each step: 
 
1. Pruning: Begin by pruning the neural 

network. This means removing neurons or 
weights that have little to no effect on the 

model’s performance. Pruning helps in 
reducing the size of the model without 
significantly affecting its accuracy. 

2. Quantization: Convert the weights and, 
possibly, activations from floating-point to a 
lower bit-width integers (e.g., 8-bit integers). 
This process reduces the model size and 

speeds up inference but might incur a slight 

drop in accuracy. 
3. Knowledge Distillation: Optionally, students 

can use knowledge distillation where the 
students train a smaller model to imitate the 
behavior of the larger, trained model. This 

way, the smaller model learns to mimic the 
performance of the larger model but with 
fewer parameters. 

4. Fine-tuning: After pruning and quantization, 
it is often beneficial to fine-tune the model 
further with a smaller learning rate to recover 
any loss in performance that might have 

occurred due to the size reduction 
techniques. 

5. Model Conversion: Convert the optimized 
model to a format that is compatible with the 

target platform. For example, TensorFlow Lite 
is a popular format for TinyML models. 

6. Optimize for the Target Platform: Some 

platforms have specific constraints or 
features that can be leveraged for further 
optimization. Tailor the model for the specific 
characteristics of the target hardware, which 
is the ESP32-CAM device we use in this 
course. 

7. Benchmark and Validate: Before deploying, 
it’s crucial to benchmark the TinyML model to 
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ensure that it meets the performance and 

resource requirements of the target device. 
Validate that the model's accuracy is still 
within acceptable limits. 

 
Optimizing for TinyML is often an iterative process 
and might require several rounds of optimization 
and validation to achieve the desired balance 
between size, speed, and accuracy. Figure 11 
illustrates a comparison between the sizes of the 
original Neural Network model and the converted 

TinyML model. From the data presented in Figure 
11, it is evident that the size of the original Neural 
Network model is 63kb, whereas the TinyML 
model is significantly smaller at 5kb. This 
substantial reduction in size makes the TinyML 

model much more appropriate for deployment on 

IoT devices. 
 

 
Figure 11: A comparison between the sizes 
of the original Neural Network model and 
the converted TinyML model. 
 
 

Deploy the human emotion recognition Web 
application to an ESP32-CAM IoT board & 
Performance Assessment 

Students will be required to acquire the skills 
necessary to deploy a web application onto an IoT 
device. 
 

1. The application code is set up within the 
Arduino IDE (Arduino, I., 2019), following the 
installation of the necessary add-on for the 
ESP32 board. 

2. Students are required to link the ESP32-CAM 
board to a host machine (where the Arduino 

IDE is operational), then proceed to cross-
compile the code within Arduino and transfer 
the executable from the host to the board. 

3. Once reset, the board initiates with the 
human emotion recognition web application 
prepared and operational. 

4. Navigate to a specified URL to access the 

application's control panel, where a user can 
register a face and subsequently assess if the 
board is capable of accurately identifying the 
user's emotion. 

 
In this course, teams are composed of 4 or 5 
members each. The hardware required for the 

exercises includes an ESP32-CAM board, an FTDI 
Mini USB to TTL Serial converter, and a mini-USB 
cable. 

To execute the TinyML model on the ESP32-CAM 

IoT board, it is necessary to transform the 
TensorFlow Lite model (model.tflite) into a C/C++ 
source file (model.cc). The ESP32-CAM IoT board 

incorporates libraries that facilitate this 
conversion. Figure 12 depicts the libraries 
needed, along with the commands to perform the 
conversion. 
 

 
Figure 12: Conversion of TensorFlow Lite 

Model to C/C++ Source File on ESP32-CAM. 
 
We evaluated the model utilizing a test dataset 
comprising 135 neutral facial expressions and 

174 smiling faces. The model achieved an overall 
accuracy of 79%, which remains the same 

performance as the large-size machine learning 
model. Figure 13 and Figure 14 depict the 
prediction results for a neutral face and a smiling 
face respectively. In real-time testing scenarios, 
when the ESP32-CAM IoT board camera captures 

a human image or detects a person, it computes 
the lengths of nine segments between the five 
identified landmarks and conducts predictions. 
 
It's imperative to note that during the training 
phase, labels were assigned to the facial 
expressions: neutral faces were labeled as 0, and 

smiling faces as 1. Consequently, the prediction 
value for a neutral face should approximate 0, 
while for a smiling face, it should be in proximity 
to 1. For instance, in Figure 13, the prediction 

value for the test image with a neutral face is 
0.09, closely aligned with the expected value of 

0. Similarly, in Figure 14, the test image with a 
smiling face has a prediction value of 0.97, which 
is near the anticipated value of 1. 
 
For a majority of the students, this marks their 
initial encounter with an IoT device or an 
embedded system, leaving them both intrigued 

and apprehensive. A well-structured and detailed 
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instruction manual can play a pivotal role in 

facilitating the prompt completion of this 
exercise, instilling confidence in the students as 
they learn novel techniques, skills, or methods. 

 

  
Figure 13: An example of prediction results 
for a neutral face in real time 

 

 
Figure 14: An example of prediction results 
for a smiling face in real time 
 
This exercise enables students to delve into the 
rudimentary aspects of Tiny Machine Learning 

and the development and deployment of IoT 
applications. In addition, they get to familiarize 
themselves with the essential components of a 
web application, which hold the potential to be 
deployed on diverse hardware. Although students 
might have been exposed to web application 

development concepts during their first or second 
year, for most, this represents the first instance 
of deploying a web application on standalone 
physical hardware. 

 

Moreover, this serves as an excellent opportunity 
for students to gain hands-on experience with IoT 
within the context of a Tiny Machine Learning 

course. 
 
Monitor and Maintain the Deployed Model 
Monitoring and maintaining the Model is a critical 
phase in the machine learning lifecycle, 
particularly once the model is deployed in a 
production environment. It entails continuously 

observing the model’s performance to ensure that 
it is still aligned with the desired outcomes and 
not degrading over time. This may involve 
tracking various metrics and comparing them 
against benchmarks or thresholds. Monitoring is 

especially important because the data the model 

encounters in the real world may evolve, causing 
what is known as "model drift". When a significant 
discrepancy or degradation in performance is 
noticed, the model may require maintenance. 
This can include fine-tuning, retraining with fresh 
data, or even redesigning the model to adapt to 
the new data patterns. Additionally, monitoring 

can help in identifying any unexpected behavior 
or anomalies which could indicate issues with the 
data, the model, or the production environment. 
Regular maintenance ensures that the model 
remains robust, accurate, and reliable as the 
dynamics of the data and environment change. 
 

6. CONCLUSIONS AND FUTURE WORK 

 
In this course, the IoT device employed is the 
ESP32-CAM. This device is a versatile and 
compact camera module equipped with an ESP32 
chip. The ESP32-CAM is particularly well-suited 

for applications in IoT due to its integration of Wi-
Fi and Bluetooth capabilities, as well as its 
support for image capturing and processing. The 
module's small form factor and low power 
consumption make it an ideal choice for projects 
that require real-time image processing, 
especially when deployed in environments with 

resource constraints. 
 
The use of the ESP32-CAM in this course 
facilitates the hands-on learning of Tiny Machine 

Learning in a practical context. Its capacity for 
capturing and processing images in real-time is 
invaluable for emotion recognition exercises. 

Furthermore, its integration capabilities with 
other sensors and devices over Wi-Fi and 
Bluetooth add layers of complexity and 
possibilities, allowing students to develop 
multifaceted projects. By working with the 
ESP32-CAM, students gain practical experience 

and insights into the challenges and opportunities 
in implementing TinyML models on IoT devices, 
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equipping them for real-world applications and 

innovations. 
 
Looking ahead, there are several avenues for 

expanding and enhancing the course and its 
curriculum. One of the pivotal enhancements 
involves enlarging the number of categories in the 
emotion dataset to make it more comprehensive. 
Human emotions are diverse and extend beyond 
neutral and smiling states to include expressions 
like anger, sadness, fear, and more. By 

incorporating a richer and more varied dataset, 
students will be able to develop more 
sophisticated and accurate emotion recognition 
models. Furthermore, integrating newer IoT 
devices and technologies, as well as updating the 

course with state-of-the-art TinyML models and 

techniques, would ensure that the curriculum 
remains abreast with the latest advancements in 
the field. 
 
Another essential aspect for future work is the 
establishment of collaborations with industry and 
academia. This would not only provide students 

with real-world datasets and challenges but also 
enable them to contribute to ongoing research 
and development in emotion recognition and IoT. 
In addition, fostering partnerships could facilitate 
guest lectures and workshops by experts in the 
field, thereby enriching the educational 
experience. As technology continues to evolve 

rapidly, creating a dynamic, adaptive, and 

collaborative learning environment that 
integrates diverse emotion datasets and stays in 
sync with technological advancements and 
industry trends is fundamental in cultivating well-
rounded professionals in the domains of TinyML 

and IoT. 
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