Skip to main content
Log in

Early Paleogene insectivore mammals of Asia and establishment of the major groups of Insectivora

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

Early Paleogene insectivore mammal associations of Asia include true insectivores (superorder Insectivora: order Lipotyphla: suborders Erinaceomorpha and Soricomorpha; orders Didymoconida and Leptictida) and insectivore-like placentals (superorder Ferae: order Cimolesta: suborders Didelphodonta, Palaeoryctida, and Pantolesta). The associations from Mongolia are the most taxonomically diverse. The Late Paleocene association from the Zhigden Member of the Naran-Bulak Formation of the Tsagan-Khushu and Naran-Bulak localities includes the following soricomorph insectivores: the micropternodontid Sarcodon pygmaeus Matthew et Granger and Hyracolestes ermineus Matthew et Granger (Sarcodontinae), the geolabidid Gobigeolabis verigranum Lopatin, the nyctitheriid Praolestes nanus Matthew, Granger et Simpson, P. maximus Kondrashov, Lopatin et Lucas (Praolestinae subfam. nov.), Jarveia erronea Kondrashov, Lopatin et Lucas (Asionyctiinae). Moreover, the Zhigden association includes the didymoconid Archaeoryctes euryalis Lopatin (Ardynictinae), the palaeoryctid Pinoryctes collector gen. et sp. nov., and the pantolestid Zhigdenia nemegetica gen. et sp. nov. (Pantolestinae). The Early Eocene association from the Bumban Member of the Naran-Bulak Formation of the Tsagan-Khushu locality includes the micropternodontid Prosarcodon maturus Lopatin et Kondrashov (Sarcodontinae); the nyctitheriids Bumbanius rarus Russell et Dashzeveg (Praolestinae), Oedolius perexiguus Russell et Dashzeveg, Edzenius lus gen. et sp. nov. (Asionyctiinae), and Eosoricodon terrigena Lopatin (Eosoricodontinae); the plesiosoricid Ordolestes ordinatus gen. et sp. nov. (Butseliinae); and the cimolestids Naranius infrequens Russell et Dashzeveg, Tsaganius ambiguus Russell et Dashzeveg, and Bagalestes trofimovi gen. et sp. nov. (Cimolestidae). The Middle Eocene association from the Khaychin Formation of the Khaychin-Ula 2 and Khaychin-Ula 3 localities includes the erinaceomorphs Eogalericius butleri Lopatin and Microgalericulus esuriens gen. et sp. nov. (Erinaceidae, Galericinae), the soricomorphs Metasarcodon reshetovi Lopatin et Kondrashov (Micropternodontidae, Sarcodontinae), Soricolestes soricavus Lopatin (Soricidae, Soricolestinae), and Asiapternodus mackennai Lopatin (Apternodontidae, Asiapternodontinae subfam. nov.); the didymoconids Ardynictis captor Lopatin (Ardynictinae), Khaichinula lupula gen. et sp. nov. (Didymoconinae), Kennatherium shirense Mellett et Szalay, and Erlikotherium edentatum gen. et sp. nov. (Kennatheriinae subfam. nov.); and the palaeoryctid Nuryctes gobiensis Lopatin et Averianov (Palaeoryctidae). Late Paleocene insectivores from the Dzhilga 1a locality (Kazakhstan) comprise the nyctitheriids Voltaia minuta Nessov and Jarveia minuscula Nessov (Asionyctiinae). The faunal assemblage dated terminal Early Eocene from the Andarak 2 locality (Kyrgyzstan) includes the micropternodontid Metasarcodon udovichenkoi (Averianov), the erinaceid Protogalericius averianovi gen. et sp. nov. (Galericinae), and the palaeoryctids Nuryctes alayensis Lopatin et Averianov and Palaeoryctidae gen. et sp. indet. From the end of the Paleocene to the onset of the Middle Eocene, the taxonomic composition and ecological structure of insectivore communities of Central Asia gradually changed, insectivore-like placentals and primitive soricomorph groups were replaced by the Recent families of Lipotyphla. The morphological and evolutionary study of Early Paleogene Asian insectivores has provided important data on phylogenetic relationships of the Insectivora. The family Micropternodontidae is divided into the subfamilies Sarcodontinae and Micropternodontinae. The earliest insectivore family Geolabididae is recorded in the Paleogene of Asia. A new classification of the family Nyctitheriidae, dividing it into the subfamilies Nyctitheriinae, Amphidozotheriinae, Asionyctiinae, Eosoricodontinae, and Praolestinae subfam. nov., is proposed. Based on the morphological continuity between Eosoricodontinae (Nyctitheriidae) and Soricolestinae (Soricidae), the family Soricidae is proposed to originate from eosoricodontine nyctitheriids. The family Plesiosoricidae is divided into the subfamilies Butseliinae and Plesiosoricinae. A new subfamily, Asiapternodontinae subfam. nov., is established in the family Apternodontidae. The analysis of evolutionary transformations of the dental system suggests the continuity of molar types in the suborder Soricomorpha, which supports the validity of the infraorders Tenrecomorpha and Soricota (the latter includes the superfamilies Micropternodontoidea, Nesophontoidea, Soricoidea, Talpoidea, and Solenodontoidea). The subfamily Galericinae (Erinaceidae) is recorded in Asia at the Early-Middle Eocene boundary. The family Didymoconidae is divided into the subfamilies Ardynictinae, Didymoconinae, and Kennatheriinae subfam. nov. Some members of the subfamily Kennatheriinae display a clear edentate functional pattern, which is atypical for insectivores and is interpreted as an adaptation for feeding on colonial insects. The following scenario of insectivore evolution, describing the major stages of their history, is proposed: (1) in the first half of the Late Cretaceous, the first occurrence of Insectivora (probably in North America); (2) in the second half of the Late Cretaceous, the primary radiation of Insectivora, establishment of Leptictida, Didymoconida, and Lipotyphla; detachment of Erinaceomorpha and Soricomorpha; (3) at the Cretaceous-Paleocene boundary, the primary radiation of Soricomorpha and establishment of Tenrecomorpha (Africa) and Soricota (North America); (4) in the Paleocene, expansion of Soricota in the Northern Hemisphere, the primary radiation of Erinaceomorpha, and emergence of Erinaceidae (North America); (5) at the Paleocene-Eocene boundary, radiation of Soricota and Erinaceidae; (6) at the Early-Middle Eocene boundary, appearance of Soricidae, Talpidae, and Galericinae; (7) in the Middle Eocene-Oligocene, replacement of primitive groups by Recent families and related groups and the formation of the Recent subfamilial diversity of the families Soricidae, Talpidae, Erinaceidae, and Tenrecidae; (8) in the Miocene-Pliocene, disappearance of primitive groups of the Recent families, a decrease in the diversity of Erinaceomorpha, extensive radiation of Soricidae and the formation of the Recent generic diversity of insectivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Agadjanian, N. N. Kalandadze, and A. S. Rautian, “The Radiation of Mammalian Orders: A New Insight,” Paleontol. Zh., No. 6, 69–73 (2000) [Paleontol. J. 34 (6), 650–654 (2000)].

  2. H. Amrine-Madsen, K. P. Koepfli, R. K. Wayne, and M. S. Springer, “A New Phylogenetic Marker, Apolipoprotein B, Provides Compelling Evidence for Eutherian Relationships,” Mol. Phylogenet. Evol. 28(2), 225–240 (2003).

    Article  Google Scholar 

  3. J. Anderson, “On the Osteology and Dentition of Hylomys,” Trans. Zool. Soc. London 8, 453–467 (1872).

    Google Scholar 

  4. J. Anderson, Anatomical and Zoological Researches: Comprising an Account of the Zoological Results of Two Expeditions to Western Yunnan in 1868 and 1875, and a Monograph of the Two Cetacean Genera Platanista and Orcella (Quaritch, London, 1879), Vol. 1.

    Google Scholar 

  5. H. E. Anthony, “Preliminary Diagnosis of an Apparently New Family of Insectivores,” Bull. Am. Mus. Natur. Hist., New Ser. 35(42), 725–728 (1916).

    Google Scholar 

  6. J. D. Archibald, “Timing and Biogeography of the Eutherian Radiation: Fossils and Molecules Compared,” Mol. Phylogenet. Evol. 28(2), 350–359 (2003).

    Article  Google Scholar 

  7. J. D. Archibald and A. O. Averianov, “Paranyctoides and Allies from the Late Cretaceous of North America and Asia,” Acta Palaeontol. Polon. 46(4), 533–551 (2001).

    Google Scholar 

  8. J. D. Archibald and K. D. Rose, “Womb with a View: The Rise of Placentals,” in The Rise of Placental Mammals: Origin and Relationships of the Major Extant Clades, Ed. by K. D. Rose and J. D. Archibald (John Hopkins Univ. Press, Baltimore, 2005), pp. 1–8.

    Google Scholar 

  9. U. Arnason, J. A. Adegoke, K. Bodin, et al., “Mammalian Mitogenomic Relationships and the Root of the Eutherian Tree,” Proc. Nat. Acad. Sci. USA 99(12), 8151–8156 (2002).

    Article  Google Scholar 

  10. U. Arnason and A. Janke, “Mitogenomic Analyses of Eutherian Relationships,” Cytogenet. Genome Res. 96, 20–32 (2002).

    Article  Google Scholar 

  11. G. J. Arrow, “A Contribution to the Classification of the Coleopterous family Dynastidae,” Trans. Entomol. Soc. London 56, 321–388 (1908).

    Google Scholar 

  12. R. J. Asher, “A Morphological Base for Assessing the Phylogeny of the ‘Tenrecoidea’ (Mammalia, Lipotyphla),” Cladistics, No. 15, 231–252 (1999).

  13. R. J. Asher, “Cranial Anatomy in Tenrecid Insectivorans: Character Evolution across Competing Phylogenies,” Am. Mus. Novit., No. 3352, 1–54 (2001).

  14. R. J. Asher, “Insectivoran-grade Placentals,” in The Rise of Placental Mammals: Origins and Relationships of the Major Extant Clades, Ed. by K. D. Rose and J. D. Archibald (Johns Hopkins Univ. Press, Baltimore 2005), pp. 50–70.

    Google Scholar 

  15. R. J. Asher, M. C. McKenna, R. J. Emry, et al., “Morphology and Relationships of Apternodus and Other Extinct, Zalambdodont, Placental Mammals,” Bull. Am. Mus. Natur. Hist., No. 273, 1–117 (2002).

  16. R. J. Asher, J. Meng, J. R. Wible, et al., “Stem Lagomorpha and the Antiquity of Glires,” Science 307(5712), 1091–1094 (2005).

    Article  Google Scholar 

  17. R. J. Asher, M. J. Novacek, and J. H. Geisler, “Relationships of Endemic African Mammals and Their Fossil Relatives Based on Morphological and Molecular Evidence,” J. Mammal. Evol. 10(1–2), 131–194 (2003).

    Article  Google Scholar 

  18. R. Asher and M. Sánchez-Villagra, “Locking Yourself out: Diversity among Dentally Zalambdodont Therian Mammals,” J. Mammal. Evol. 12(1–2), 265–282 (2005).

    Article  Google Scholar 

  19. A. O. Averianov, “Tarsals of Glires (Mammalia) from the Early Eocene of Kirgizia,” Geobios 24(2), 215–220 (1991).

    Google Scholar 

  20. A.O. Averianov, “Early Paleogene Ctenodactyloid Rodents of Asia and the Origin of the Family Ctenodactylidae,” Tr. Zool. Inst. Akad. Nauk SSSR 243, 148–158 (1993).

    Google Scholar 

  21. A. Averianov, “A New Species of Sarcodon (Mammalia, Palaeoryctoidea) from the Lower Eocene of Kirgizia,” Geobios 27(2), 255–258 (1994a).

    Google Scholar 

  22. A. O. Averianov, “Early Eocene Mimotonids of Kyrgyzstan and the Problem of Mixodontia,” Acta Palaeontol. Polon. 39(4), 393–411 (1994b).

    Google Scholar 

  23. A. Averianov, “Nyctitheriid Insectivores from the Upper Paleocene of Southern Kazakhstan (Mammalia, Lipotyphla),” Senckenb. Leth. 75(1/2), 215–219 (1995).

    Google Scholar 

  24. A. O. Averianov, “Early Eocene Rodentia of Kyrgyzstan,” Bull. Mus. Nat. Hist. Natur., Ser. 4C 18(4), 629–662 (1996a).

    Google Scholar 

  25. A. O. Averianov, “Artiodactyla from the Early Eocene of Kyrgyzstan,” Palaeovertebrata 25(2–4), 359–369 (1996b).

    Google Scholar 

  26. A. O. Averianov, “Taxonomic Notes on Some Recently Described Eocene Glires (Mammalia),” Zoosyst. Ross. 7(1), 205–208 (1998).

    Google Scholar 

  27. A.O. Averianov, “Present-Day Concepts of the System of Placental Mammals,” in Systematics, Phylogeny, and Paleontology of Small Mammals, Ed. by A. O. Averianov and N. I. Abramson (Zool. Inst. Ross. Akad Nauk, St. Petersburg, 2003), pp. 15–20 [in Russian].

    Google Scholar 

  28. A. O. Averianov and M. Godinot, “A Report on the Eocene Andarak Mammal Fauna of Kirgizstan,” Bull. Carnegie Mus. Natur. Hist., No. 34, 210–219 (1998).

  29. A. O. Averianov and M. Godinot, “Ceratomorphs (Mammalia, Perissodactyla) from the Early Eocene Andarak 2 Locality in Kyrgyzstan,” Geodiversitas 27(2), 221–237 (2005).

    Google Scholar 

  30. A. O. Averianov and A. V. Lopatin, “Eocene Lagomorphs (Mammalia) of Asia. 1. Aktashmys (Strenulagidae fam. nov.),” Paleontol. Zh., No. 3, 81–90 (2005) [Paleontol. J. 39 (3), 308–317 (2005)].

  31. A. O. Averianov and T. Martin, “Rodents from the Early Paleogene Dzhylga Localities in Southern Kazakhstan,” Neues Jahrb. Geol. Paläontol. Mh., No. 8, 483–499 (2001).

  32. A. O. Averianov, L. A. Nessov, and N. I. Udovichenko, “A Late Paleocene Assemblage of Bony Fish and Other Vertebrates from the Dzhilga Locality in Southern Kazakhstan,” Mat. Ist. Fauny Flory Kazakhstana 12 79–91 (1993).

    Google Scholar 

  33. A. O. Averianov and O. R. Potapova, “The Oldest Known Amynodontid (Perissodactyla, Ceratomorpha) from the Early Eocene of Kyrgyzstan” CR Acad. Sci. Paris, Ser. 2 323, 1059–1065 (1996).

    Google Scholar 

  34. A. O. Averianov and N. I. Udovichenko, “Age of Vertebrates from the Andarak Locality (Southern Fergana)” Stratigr. Geol. Korrelyatsiya 1(3), 139–141 (1993).

    Google Scholar 

  35. D. Badamgarav and V. Yu. Reshetov, “On a New Locality of Early Tertiary Mammals in the Transaltai Gobi,” Tr. Sovm. Sovet.-Mongol. Paleontol. Eksped., No. 3 (Paleontology and Biostratigraphy of Mongolia), 265–268 (1976).

  36. D. Badamgarav and V. Yu. Reshetov, Paleontology and Stratigraphy of the Paleogene Transaltai Gobi (Nauka, Moscow 1985 [in Russian].

    Google Scholar 

  37. A. D. Barnosky, “A Skeleton of Mesoscalops (Mammalia, Insectivora) from the Miocene Deep River Formation, Motana, and a Review of the Proscalopid Moles: Evolutionary, Functional, and Stratigraphic Relationships,” J. Vertebr. Paleontol., No. 1, 285–339 (1981).

  38. S. Baudelot, “Etude des chiropteres, insectivores et rongeurs du Miocene de Sansan (Gers),” These Univ. Toulouse., No. 496, 1–364 (1972).

  39. K. C. Beard, “East of Eden: Asia As an Important Center of Taxonomic Origination in Mammalian Evolution,” Bull. Carnegie Mus. Natur. Hist., No. 34, 5–39 (1998).

  40. K. C. Beard, “East of Eden at the Paleocene/Eocene Boundary,” Science 295(5562), 2028–2029 (2002).

    Article  Google Scholar 

  41. K. C. Beard and M. Dawson, “Intercontinental Dispersal of Holarctic Land Mammals near the Paleocene/Eocene Boundary: Paleogeographic, Paleoclimatic and Biostratigraphic Implications,” Bull. Soc. Géol. Fr. 170(5), 697–706 (1999).

    Google Scholar 

  42. E. I. Beliajeva, B. A. Trofimov, and V. J. Reshetov, “General Stages in the Evolution of Late Mesozoic and Early Tertiary Mammalian Fauna in Central Asia,” Tr. Sovm. Sovet.—Mongol. Paleontol. Eksped., No. 1 (Fauna and Biostratigraphy of the Mesozoic and Cenozoic of Mongolia), 19–45 (1974).

  43. M. J. Benton, “Early Origins of Modern Birds and Mammals: Molecules vs. Morphology,” Bioessays 21(12), 1043–1051 (1999).

    Article  Google Scholar 

  44. W. A. Berggren, D. V. Kent, C. C. Swisher, and M.-P. Aubry, “A Revised Cenozoic Geochronology and Chronostratigraphy,” SEPM Spec. Publ., No. 54, 129–212 (1995).

  45. R. L. Bernor, L. Kordos, L. Rook, et al., “Recent Advances on Multidisciplinary Research at Rudabánya, Late Miocene (MN9), Hungary: A Compendium,” Palaeontogr. Ital. 89, 3–36 (2004).

    Google Scholar 

  46. Sh.-D. Bi, “Metexallerix from the Early Miocene of North Junggar Basin, Xinjiang Uygur Autonomous Region, China,” Vertebr. Palasiat. 37(2), 140–155 (1999).

    Google Scholar 

  47. Sh.-D. Bi, “Erinaceidae from the Early Miocene of North Junggar Basin, Xinjiang Uygur Autonomous Region, China,” Vertebr. Palasiat. 38(1), 43–51 (2000).

    Google Scholar 

  48. J. I. Bloch, K. D. Rose, and P. D. Gingerich, “New Species of Batodonoides (Lipotyphla, Geolabididae) from the Early Eocene of Wyoming: Smallest Known Mammal?,” J. Mammal. 79(3), 804–827 (1998).

    Google Scholar 

  49. J. I. Bloch, R. Secord, and P. D. Gingerich, “Systematics and Phylogeny of Late Paleocene and Early Eocene Palaeoryctinae (Mammalia, Insectivora) from the Clarks Fork and Bighorn Basins, Wyoming,” Contrib. Mus. Paleontol. Univ. Michigan. 31(5), 119–154 (2004).

    Google Scholar 

  50. B. Bohlin, “Oberoligozäne Säugetiere aus dem Shargaltein-Tal (Western Kansu),” Palaeontol. Sin., Nov. Ser. C, No. 3, 1–66 (1937).

  51. B. Bohlin, “The fossil mammals from the Tertiary deposit of Taben-Buluk, Western Kansu: Part 1. Insectivora and Lagomorpha,” Palaeontol. Sin., Nov. Ser. C, No. 8a, 40–99 (1942).

  52. B. Bohlin, “The Fossil Mammals from the Tertiary Deposit of Taben-Buluk, Western Kansu: 2. Simplicidentata, Carnivora, Artiodactyla, Perissodactyla and Primates,” Palaeontol. Sin., Nov. Ser. C, No. 8b, 1–259 (1946).

  53. C. L. Bonaparte, “Synopsis Vertebratorum Systematis,” Nuov. Ann. Sci. Natur. Bologna 2, 105–133 (1838).

    Google Scholar 

  54. C. E. Borghi, S. M. Giannoni, and V. G. Roig, “Eye Reduction in Subterranean Mammals and Eye Protective Behavior in Ctenomys,” Mastozool. Neotrop. 9(2), 123–134 (2002).

    Google Scholar 

  55. T. E. Bowdich, An Analysis of the Natural Classification of Mammalia, for the Use of Students and Travellers (J. Smith, Paris, 1821).

    Google Scholar 

  56. G. J. Bowen, D. J. Beerling, P. L. Koch, et al., “A Humid Climate State during the Palaeocene/Eocene Thermal Maximum,” Nature 432(7016), 495–499 (2004).

    Article  Google Scholar 

  57. G. J. Bowen, W. C. Clyde, P. L. Koch, et al., “Mammalian Dispersal at the Paleocene/Eocene Boundary,” Science 295(5562), 2062–2065 (2002).

    Article  Google Scholar 

  58. T. M. Bown and D. M. Schankler, “A Review of the Proteutheria and Insectivora of the Willwood Formation (Lower Eocene), Bighorn Basin, Wyoming,” Bull. US Geol. Surv., No. 1523, 1–79 (1982).

  59. R. Broom, “On the Structure of the Skull in Chrysochloris,” Proc. Zool. Soc. London 32, 449–459 (1916).

    Google Scholar 

  60. P. M. Butler, “Studies of the Mammalian Dentition: 1. The Teeth of Centetes ecaudatus and Its Allies,” Proc. Zool. Soc. London, Ser. B 107(1), 103–132 (1937).

    Google Scholar 

  61. P. M. Butler, “Studies of the Mammalian Dentition: Differentiation of the Postcanine Dentition,” Proc. Zool. Soc. London, Ser. B 109(1), 1–36 (1939).

    Google Scholar 

  62. P. M. Butler, “A Theory of the Evolution of Mammalian Molar Teeth,” Am. J. Sci. 239(6), 421–450 (1941).

    Article  Google Scholar 

  63. P. M. Butler, “On the Evolution of the Skull and Teeth in the Erinaceidae, with Special Reference to Fossil Material in the British Museum,” Proc. Zool. Soc. London, Ser. B 118(2), 446–500 (1948).

    Google Scholar 

  64. P. M. Butler, “The Skull of Ictops and the Classification of the Insectivora,” Proc. Zool. Soc. London, Ser. B 126(2), 453–481 (1956a).

    Google Scholar 

  65. P. M. Butler, “Erinaceidae from the Miocene of East Africa,” Brit. Mus. Natur. Hist. Fossil Mamm. Afr. 11, 1–75 (1956b).

    Google Scholar 

  66. P. M. Butler, “The Problem of Insectivore Classification,” in Studies of Vertebrate Evolution, Ed. by K. A. Joysey and T. S. Kemp (Oliver and Boyd, Edinburgh, 1972), pp. 253–265.

    Google Scholar 

  67. P. M. Butler, “The Giant Erinaceid Insectivore, Deinogalerix Freudenthal, from the Upper Miocene of Gargano, Italy,” Scripta Geol., No. 57, 1–72 (1980).

  68. P. M. Butler, “Phylogeny of the Insectivores,” in The Phylogeny and Classification of the Tetrapods, Vol. 2: Mammals, Ed. by M. J. Benton (Clarendon Press, Oxford, 1988), pp. 117–141.

    Google Scholar 

  69. P. M. Butler, “Dilambdodont Molars: A Functional Interpretation of Their Evolution,” Palaeovertebrata 25(2–4), 205–213 (1996).

    Google Scholar 

  70. P. M. Butler and A. T. Hopwood, Insectivora and Chiroptera from the Miocene Rocks of Kenya Colony (Order Trustees British Mus., London, 1957).

    Google Scholar 

  71. P. M. Butler and Z. Kielan-Jaworowska, “Is Deltatheridium Marsupial?,” Nature 245(5420), 105–106 (1973).

    Article  Google Scholar 

  72. A. Cabrera, Genera Mammalium, Insectivora Galeopithecia (Museo Nacional de Ciencias Naturales, Madrid, 1925).

    Google Scholar 

  73. B. Campbell, “A Reconsideration of the Shoulder Musculature of the Cape Golden Mole,” J. Mammal. 19(2), 234–240 (1938).

    Google Scholar 

  74. R.L. Carroll, Vertebrate Paleontology and Evolution (Freeman and Co., New York, 1988).

    Google Scholar 

  75. M. Chow and T. Qi, “Paleocene Mammalian Fossils from Nomogen Formation of Inner Mongolia,” Vertebr. Palasiat. 16(2), 77–85 (1978).

    Google Scholar 

  76. J. Clark, “The Stratigraphy and Paleontology of the Chadron Formation in the Big Badlands of South Dakota,” Ann. Carnegie Mus. 25(21), 261–351 (1937).

    Google Scholar 

  77. J. Clark, “Status of the Generic Names Metacodon and Geolabis (Insectivore),” J. Paleontol. 40(5), 1248–1251 (1966).

    Google Scholar 

  78. J. Clark, “Cymaprimadontidae, a New Family of Insectivores,” Field Mus. Natur. Hist. 16(8), 241–254 (1968).

    Google Scholar 

  79. W. A. Clemens, “Fossil Mammals of the Type Lance Formation Wyoming: Part 3. Eutheria and Summary,” Univ. California Publ. Geol. Sci. 94, 1–102 (1973).

    Google Scholar 

  80. W. C. Clyde and I. H. Khan, “Tectonic and Biogeographic Implications of the Ghazij Formation (Lower Eocene), Baluchistan Province, Pakistan,” GFF 122(1), 34–35 (2000).

    Google Scholar 

  81. W. C. Clyde, I. H. Khan, and P. Gingerich, “Stratigraphic Response and Mammalian Dispersal during Initial India-Asia Collision: Evidence from the Ghazij Formation, Balochistan Province, Pakistan,” Geology 31(12), 1097–1100 (2003).

    Article  Google Scholar 

  82. W. C. Clyde, J. Stamatakos, and P. Gingerich, “Chronology of the Wasatchian Land-Mammal Age (Early Eocene); Magnetostratigraphic Results from the McCullough Peaks Section, Northern Bighorn Basin, Wyoming,” J. Geol. 102(3), 367–377 (1994).

    Article  Google Scholar 

  83. W. C. Clyde, J.-P. Zonneveld, J. Stamatakos, et al., “Magnetostratigraphy across Wasatchian/Bridgerian NALMA Boundary (Early to Middle Eocene) in the Western Green River Basin, Wyoming,” J. Geol. 105(6), 657–669 (1997).

    Article  Google Scholar 

  84. L. C. Contreras and K. McNab, “Thermoregulation and Energetics in Subterranean Mammals,” in Evolution of Subterranean Mammals at the Organismal and Molecular Level, Ed. by E. Nevo and O. A. Reig (Alan Liss, New York, 1990), pp. 231–250.

    Google Scholar 

  85. M. C. Coombs, “Status of Simidectes (Insectivora, Pantolestoidea) of the Late Eocene of North America,” Am. Mus. Novit., No. 2455, 1–41 (1971).

    Google Scholar 

  86. E. D. Cope, “The Vertebrata of the Tertiary Formations of the West: Book 1,” Rep. US Geol. Surv. 3, 1–1002 (1884).

    Google Scholar 

  87. P. S. Corneli, “Complete Mitochondrial Genomes and Eutherian Evolution,” J. Mammal. Evol. 9(4), 281–305 (2003).

    Article  Google Scholar 

  88. P. E. Cray, “Marsupialia, Insectivora, Primates, Creodonta and Carnivora from the Headon Beds (Upper Eocene) of Southern England,” Bull. Brit. Mus. Natur. Hist. Geol. 23(1), 1–102 (1973).

    Google Scholar 

  89. J.-Y. Crochet, “Les insectivores des phosphorites du Quercy,” Palaeovertebrata 6(1–2), 109–159 (1974).

    Google Scholar 

  90. J.-Y. Crochet, “Diversité des insectivores soricidés du Miocene inférieur de France,” Coll. Intern. CNRS, No. 218, 631–652 (1975).

  91. J.-Y. Crochet, Les marsupiaux du Tertiaire d’Europe (Fondation Singer-Polignac, Paris, 1980).

    Google Scholar 

  92. M. Crusafont-Pairo and D. E. Russell, “Un nouveau paroxyclaenidè de l’Eocéne d’Espagne,” Bull. Mus. Nat. Hist. Natur., Sér. 2 38(5), 757–773 (1967).

    Google Scholar 

  93. G. L. Cuvier, Le règne animal distribué d’après son organisation pour servir de base à l’histoire naturelle des animaux et d’introduction à l’anatomie comparée, Vol. 1: Contenant l’intoduction, les mammiferes et les oiseaux (Déterville, Paris, 1817).

    Google Scholar 

  94. E. Dannelid, “Dental Adaptations in Shrews,” in Evolution of Shrews, Ed. by J. M. Wójcik and M. Wolsan (Mammal Research Inst., Bialowieza, 1998), pp. 133–156.

    Google Scholar 

  95. V. Dantzer and L. Paulesu, “Comparative Biology of the Vertebrate Placenta—A Workshop Report,” Placenta 23 (16: Suppl. A, Trophoblast Research), 133–135 (2002).

    Article  Google Scholar 

  96. D. Dashzeveg, “New Mesonychids (Condylarthra, Mesonychidae) from the Paleogene of Mongolia,” Tr. Sovm. Sovet.-Mongol. Paleontol. Eksped., No. 3 (Paleontology and Biostratigraphy of Mongolia), 14–31 (1976).

  97. D. Dashzeveg, “On the First Find of Hyopsodus Leidy, 1870 (Condylarthra, Mammalia) in the Mongolian People’s Republic,” Tr. Sovm. Sovet.-Mongol. Paleontol. Eksped., No. 4 (Fauna, Flora, and Biostratigraphy of the Mesozoic and Cenozoic of Mongolia), pp. 7–13 (1977).

  98. D. Dashzeveg, “A Find of a Hyracothere in Mongolia,” Paleontol. Zh., No. 3, 108–113 (1979a).

  99. D. Dashzeveg, “On a Primitive Representative of Equids (Mammalia, Perissodactyla) from the Eocene of Central Asia,” Tr. Sovm. Sovet.-Mongol. Paleontol. Eksped., No. 8 (Fauna of the Mesozoic and Cenozoic of Mongolia) 10–22 (1979b).

  100. D. Dashzeveg, “La faune de mammifères du Paléogene inférieur de Naran-Bulak (Asie centrale) et ses correlations avec l’Europe et l’Amerique du Nord,” Bull. Soc. Géol. Fr. 24(2), 275–281 (1982).

    Google Scholar 

  101. D. Dashzeveg, “Nouveax Hyaenodontinae’s (Creodonta, Mammalia) du Paleogene de Mongolie,” Ann. Paleontol. 71, 223–256 (1985).

    Google Scholar 

  102. D. Dashzeveg, “Holarctic Correlation of Non-marine Paleocene-Eocene Boundary Strata Using Mammals,” J. Geol. Soc. London 145, 473–478 (1988).

    Google Scholar 

  103. D. Dashzeveg, “New Trends in Adaptive Radiation of Early Tertiary Rodents (Rodentia, Mammalia), Acta Zool. Cracov. 33, 37–44 (1990).

    Google Scholar 

  104. D. Dashzeveg, J.-L. Hartenberger, T. Martin, and S. Legendre, “A Peculiar Minute Glires from the Early Eocene of Mongolia,” Bull. Carnegie Mus. Natur. Hist., No. 34, 194–209 (1998).

    Google Scholar 

  105. D. Dashzeveg and M. C. McKenna, “Tarsioid Primate from the Early Tertiary of Mongolian People’s Republic,” Acta Palaeontol. Polon. 22(2), 119–137 (1977).

    Google Scholar 

  106. D. Dashzeveg and D. E. Russell, “A New Middle Eocene Insectivore from the Mongolian People’s Republic,” Geobios 18(6), 871–875 (1985).

    Google Scholar 

  107. D. Dashzeveg and D. E. Russell, “Paleocene and Eocene Mixodontia (Mammalia, Glires) of Mongolia and China,” Palaeontology 31, 129–164 (1988).

    Google Scholar 

  108. D. Dashzeveg and D. E. Russell, “Extension of Dyspternine Pantolestidae (Mammalia, Cimolesta) in the Early Oligocene of Mongolia,” Geobios 25(5), 647–650 (1992).

    Google Scholar 

  109. M. R. Dawson and K. C. Beard, “New Late Paleocene Rodents (Mammalia) from Big Multi Quarry, Washakie Basin, Wyoming,” Palaeovertebrata 25(2–4), 301–321 (1996).

    Google Scholar 

  110. M. R. Dawson and Y. Tong, “New Material of Pappocricetodon schaubi, an Eocene Rodent (Mammalia: Cricetidae) from the Yuanqu Basin, Shanxi Province, China,” Bull. Carnegie Mus. Natur. Hist., No. 34, 278–285 (1998).

  111. E. V. Devyatkin, Cenozoic of Inner Asia: Stratigraphy, Geochronology, Correlation (Moscow, Nauka, 1981) [in Russian].

    Google Scholar 

  112. E. V. Devyatkin, “The Magnetostratigraphical Scheme of the Cenozoic of Mongolia,” Stratigr. Geol. Korrelyatsiya 2(2), 35–45 (1994).

    Google Scholar 

  113. E. V. Devyatkin, K. Balogh, and A. Dudich, “Geochronology of Basalts from the Valley of Lakes, Mongolia, and Their Correlation with the Cenozoic Sedimentary Sequence,” Russ. J. Earth Sci. 4(5), 389–397 (2002).

    Google Scholar 

  114. G. E. Dobson, A Monograph of the Insectivora, Systematic and Anatomical, Part 1 (John Van Voorst, London, 1882).

    Google Scholar 

  115. J. A. Dorr, “Partial Skull of Paleosinopa simpsoni (Mammalia, Insectivora), Latest Paleocene Hoback Formation, Central Western Wyoming, with Some General Remarks on the family Pantolestidae,” Contrib. Mus. Paleontol. Univ. Michigan 24(23), 281–307 (1977).

    Google Scholar 

  116. C. J. Douady, P. I. Chatelier, O. Madsen, et al., “Molecular Phylogenetic Evidence Confirming the Eulipotyphla Concept and in Support of Hedgehogs as the Sister Group to Shrews,” Mol. Phylogenet. Evol. 13(1), 200–209 (2002).

    Article  Google Scholar 

  117. C. J. Douady and E. J. P. Douzery, “Molecular Estimation of Eulipotyphlan Divergence Times and the Evolution of ‘Insectivora,’” Mol. Phylogenet. Evol. 28(2), 285–296 (2003).

    Article  Google Scholar 

  118. J. J. Eberle, “Bridging the Transition between Didelphodonts and Taeniodonts,” J. Paleontol. 73(5), 936–944 (1999).

    Google Scholar 

  119. J. J. Eberle and M. C. McKenna, “Early Eocene Leptictida, Pantolesta, Creodonta, Carnivora, and Mesonychidae (Mammalia) from the Eureka Sound Group, Ellesmere Island, Nunavut,” Can. J. Earth Sci. 39(6), 899–910 (2002).

    Article  Google Scholar 

  120. T. Edinger, “Midbrain Exposure and Overlap in Mammalia,” Am. Zool. 4(1), 5–19 (1964).

    Google Scholar 

  121. J. F. Eisenberg and E. Gould, “The Tenrecs: A Study in Mammalian Behavior and Evolution,” Smiths. Contrib. Zool. 27, 1–138 (1970).

    Google Scholar 

  122. G. L. Emerson, C. W. Kilpatrick, B. E. McNiff, et al., “Phylogenetic Relationships of the Order Insectivora Based on Complete 12S rRNA Sequences from Mitochondria,” Cladistics 15(3), 221–230 (1999).

    Article  Google Scholar 

  123. R. J. Emry, “Mammals of the Bridgerian (Middle Eocene) Elderberry Canyon Local Fauna of Eastern Nevada,” Geol. Soc. Am. Spec. Pap., No. 243, 187–210 (1990).

  124. B. Engesser, “Die obermiozäne Säugetierfauna von Anwil (Baselland) // Tätber. Natf. Ges. Basell. 28, 37–363 (1972).

    Google Scholar 

  125. B. Engesser, “Revision der europäischen Heterosoricinae (Insectivora, Mammalia),” Eclog. Geol. Helv. 58(3), 649–671 (1975).

    Google Scholar 

  126. B. Engesser, “Relationships of Some Insectiveres and Rodents from the Miocene of North America and Europe,” Bull. Carnegie Mus. Natur. Hist., No. 14, 1–68 (1979).

  127. B. Engesser, “Insectivora und Chiroptera (Mammalia) aus dem Neogen der Türkei,” Schweiz. Paläontol. Abh. 102, 47–149 (1980).

    Google Scholar 

  128. G. Fischer von Waldheim, “Adversaria zoologica,” Mem. Soc. Imp. Natur. Mosc. 5, 368–428 (1817).

    Google Scholar 

  129. R. Fons, S. Sender, T. Peters, and K.-D. Jurgens, “Rates of Rewarming, Heart and Respiratory Rates and Their Significance for Oxygen Transport during Arousal from Torpor in the Smallest Mammal, the Etruscan Shrew Suncus etruscus,” J. Experiment. Biol. 200, 1451–1458 (1997).

    Google Scholar 

  130. R. C. Fox, “Eutherian Mammal from the Early Campanian (Late Cretaceous) of Alberta, Canada,” Nature 227(5258), 630–631 (1970).

    Article  Google Scholar 

  131. R. C. Fox, “Mammals from the Upper Cretaceous Oldman Formation, Alberta: 3. Eutheria,” Can. J. Earth Sci. 16(1), 114–125 (1979).

    Google Scholar 

  132. R. C. Fox, “Evolutionary Implications of Tooth Replacement of the Paleocene Mammal Pararyctes,” Can. J. Earth Sci. 20(1), 19–22 (1983).

    Article  Google Scholar 

  133. R. C. Fox, “Melaniella timosa n. gen. and sp., an Unusual Mammal from the Paleocene of Alberta, Canada,” Can. J. Earth Sci. 21(11), 1335–1338 (1984a).

    Google Scholar 

  134. R. C. Fox, “Paranyctoides maleficus (New Species), the Early Eutherian Mammal from the Cretaceous of Alberta,” Carnegie Mus. Natur. Hist. Spec. Publ., No. 9, 9–20 (1984b).

  135. R. C. Fox, “A New Palaeoryctid (Insectivora: Mammalia) from the Late Paleocene of Alberta, Canada,” J. Paleontol. 78(3), 612–616 (2004).

    Google Scholar 

  136. R. C. Fox and C. S. Scott, “First Evidence of a Venom Delivery Apparatus in Extinct Mammals,” Nature 435(7045) 1091–1093 (2005).

    Article  Google Scholar 

  137. M. Freudenthal, “Deinogalerix koenigswaldi nov. gen., nov. spec., a Giant Insectivore from the Neogene of Italy,” Scripta Geol., No. 14, 1–19 (1972).

  138. R. Frost, W. Ch. Wozencraft, and R.S. Hoffmann, “Phylogenetic Relationships of Hedgehogs and Gymnures (Mammalia: Insectivora: Erinaceidae),” Smiths. Contrib. Zool., No. 518, 1–50 (1991).

  139. L. K. Gabounia and V. M. Chkhikvadze, “Aperçu sur les faunes de vertébrés de Paléogene de la région de Zaîssan (Kazakhstan de l’Est),” Mém. Trav. EPHE. Inst. Montpellier, No. 21, 193–203 (1997).

  140. S. Gabriel and P. D. Polly, “Monophyly, Dichotomy or Neither: Investigating ‘Lipotyphlan’ Phylogeny Using Geometric Morphometrics,” J. Vertebr. Paleontol. 25(3 Suppl), 61A (2005).

    Google Scholar 

  141. L. K. Gabunia, “On the Question of the Origin of the Talpinae,” Soobshch. Akad. Nauk Gruz. SSR 125(3), 649–651 (1987).

    Google Scholar 

  142. L. K. Gabunia, “On the First Find of Pantolestids (Pantolestidae, Insectivora) in the Paleogene of the USSR,” Soobshch. Akad. Nauk Gruz. SSR 136(1), 177–180 (1989).

    Google Scholar 

  143. L. K. Gabunia and N. D. Biryukov, “On the Presence of an Unusual Representative of Arctocyonoidea in the Paleogene of Asia,” Soobshch. Akad. Nauk Gruz. SSR 92(2), 489–492 (1978).

    Google Scholar 

  144. L. K. Gabunia and V. D. Gabunia, “A Brief Review of Paleogene and Early Miocene Faunas of Insectivores from the Zaisan Depression (Eastern Kazakhstan),” Izv. Akad. Nauk Gruz. SSR, Ser. Biol. 13(6), 406–411 (1987).

    Google Scholar 

  145. E. C. Galbreath, “A Contribution to the Tertiary Geology and Paleontology of Northeastern Colorado,” Paleontol. Contrib. Univ. Kansas, No. 13(4), 1–120 (1953).

    Google Scholar 

  146. E. C. Galbreath, “An Apternodontid (Insectivora) from the Chadronian Oligocene of Northeastern Colorado,” Trans. Kansas Acad. Sci. 81(4), 297–302 (1979).

    Google Scholar 

  147. P. P. Gambaryan, Evolution of Facial Muscles of Mammals (Nauka, Leningrad, 1989) [in Russian].

    Google Scholar 

  148. C. E. Gawn, “The Genus Proterix (Insectivora, Erinaceidae) of the Upper Oligocene of North America,” Am. Mus. Novit., No. 2315, 1–26 (1968).

    Google Scholar 

  149. J. H. Geisler, “Humeri of Oligoscalops (Proscalopidae, Mammalia) from the Oligocene of Mongolia,” Bull. Am. Mus. Natur. Hist., No. 285, 166–176 (2004).

    Google Scholar 

  150. E. Gheerbrant, “Afrodon chleuhi nov. gen., nov. sp., ‘insectivores’ (Mammalia, Eutheria) lipotyphlé (?), du Paléocène marocain: données préliminaires,” CR Acad. Sci. Paris, Sér. 2 307, 1303–1309 (1988).

    Google Scholar 

  151. E. Gheerbrant, “Bustilus (Eutheria, Adapisoriculidae) and the Absence of Ascertained Marsupials in the Paleocene of Europe,” Terra Nova 3(6), 586–592 (1991).

    Google Scholar 

  152. E. Gheerbrant, “Les mammifères paléocènes du bassin d’Ouarzazate (Maroc): 1. Introduction générale et Palaeoryctidae,” Palaeontogr. Abt. A 224, 67–132 (1992).

    Google Scholar 

  153. E. Gheerbrant, “Premières données sur les mammifères ‘insectivores’ de l’Yprésien du Bassin d’Ouarzazate (Maroc: site de N’Tagourt 2),” Neues Jahrb. Geol. Paläontol. Abh. 187(2), 225–242 (1993).

    Google Scholar 

  154. E. Gheerbrant and J.-L. Hartenberger, “Nouveau Mammifère (?Lipotyphla, ?Erinaceomorpha) de l’Eocène inférieur de Chambi (Tunisie),” Paläontol. Z. 73(1/2), 143–156 (1999).

    Google Scholar 

  155. E. Gheerbrant and D. E. Russell, “Presence of the Genus Afrodon [Mammalia, Lipotyphla (?), Adapisoriculidae] in Europe; New Data for the Problem of Trans-Tethyan relations between Africa and Europe around the K/T Boundary,” Palaeogeogr. Palaeoclimatol. Palaeoecol. 76(1–2), 1–15 (1989).

    Article  Google Scholar 

  156. E. Gheerbrant and D. E. Russell, “Bustilus cernaysi nov. gen., nov. sp., nouvel adapisoriculidé (Mammalia, Eutheria) paléocène d’Europe,” Geobios 24(4), 467–481 (1991).

    Google Scholar 

  157. E. Gheerbrant, J. Sudre, S. Sen, et al., “Nouvelles données sur les mammifères du Thanetien et de l’Yprésien du bassin d’Ouarzazate (Maroc) et leur contexte stratigraphique,” Palaeovertebrata 27(3–4), 155–202 (1998).

    Google Scholar 

  158. T. Gill, “Arrangement of the Families of Mammals with Analytical Tables,” Smiths. Misc. Collect. 11, 1–98 (1872).

    Google Scholar 

  159. T. N. Gill, “Synopsis of Insectivores,” Bull. US Geol. Geogr. Surv. Terr., Ser. 2, No. 2, 91–120 (1875).

  160. T. N. Gill, “Insectivora,” in The Standard Natural History, Vol. 5 Mammals (Cassino, Boston, 1885), pp. 134–158.

    Google Scholar 

  161. P. D. Gingerich, “A New Species of Palaeosinopa (Insectivora, Pantolestidae) from the Late Paleocene of Western North America,” J. Mammal. 61(3), 449–454 (1980).

    Google Scholar 

  162. P. D. Gingerich, “Radiation of Early Cenozoic Didymoconidae (Condylarthra, Mesonychia) in Asia, with a New Genus from the Early Eocene of Western North America,” J. Mammal. 62(3), 526–538 (1981).

    Google Scholar 

  163. P. D. Gingerich, “Aaptoryctes (Palaeoryctidae) and Thelysia (Palaeoryctidae?): New Insectivores from the Late Paleocene and Early Eocene of Western North America,” Contrib. Mus. Paleontol. Univ. Michigan 26(3), 37–47 (1982).

    Google Scholar 

  164. P. D. Gingerich, “New Adapisoricidae, Pentacodontidae, and Hyopsodontidae (Mammalia, Insectivora and Condylarthra) from the Late Paleocene of Wyoming and Colorado,” Contrib. Mus. Paleontol. Univ. Michigan 26(11), 227–255 (1983).

    Google Scholar 

  165. P. D. Gingerich, “Early Eocene Bats (Mammalia, Chiroptera) and Other Vertebrates in Freshwater Limestones of the Willwood Formation, Clark’s Fork Basin, Wyoming,” Contrib. Mus. Paleontol. Univ. Michigan 27(11), 275–320 (1987).

    Google Scholar 

  166. P. D. Gingerich, “Stratigraphic and Micropaleontological Constraints on the Middle Eocene Age of the Mammal-bearing Kuldana Formation of Pakistan,” J. Vertebr. Paleontol. 23(3), 643–651 (2003).

    Google Scholar 

  167. G. C. Gould, “Hedgehog Phylogeny (Mammalia, Erinaceidae)—The Reciprocal Illumination of the Quick and the Dead,” Am. Mus. Novit., No. 3131, 1–45 (1995).

  168. G. C. Gould, “The Phylogenetic Resolving Power of Discrete Dental Morphology among Extant Hedgehogs and the Implication for Their Fossil Record,” Am. Mus. Novit., No. 3340, 1–52 (2001).

  169. G. de Graaff, “A New Chrysochlorid from Makapansgat,” Palaeontol. Afr. 5, 21–27 (1957).

    Google Scholar 

  170. J. E. Gray, “On the Natural Arrangement of Vertebrose Animals,” London Med. Repos. 15, 296–310 (1821).

    Google Scholar 

  171. M. Green, “A New Species of Plesiosorex (Mammalia, Insectivora) from the Miocene of South Dakota,” Neues Jahrb. Geol. Paläontol. Mh., No. 4, 189–198 (1977).

  172. W. K. Gregory, “The Orders of Mammals,” Bull. Am. Mus. Natur. Hist. 27, 1–524 (1910).

    Google Scholar 

  173. R. Grenyer and A. Purvis, “A Composite Species-level Phylogeny of the ‘Insectivora’ (Mammalia: Order Lipotyphla Haeckel, 1866),” J. Zool. 260(3), 245–257 (2003).

    Article  Google Scholar 

  174. V. I. Gromova, “On a New Family (Tshelkariidae) of Primitive Predators (Creodonta),” Tr. Paleontol. Inst. Akad. Nauk SSSR 77(4), 41–74 (1960).

    Google Scholar 

  175. G.F. Gunnell, “Paleocene Mammals and Faunal Analysis of the Chappo Type Locality (Tiffanian), Green River Basin, Wyoming,” J. Vertebr. Paleontol. 14(1), 81–104 (1994).

    Article  Google Scholar 

  176. J.-W. Guo, Y. Wang, and X.-A. Yang, “A New Early Eocene Ctenodactyloid Rodent (Rodentia, Mammalia) and Associated Mammalian Fossils from Danjiangkou, Hubei,” Vertebr. Palasiat. 38(4), 303–313 (2000).

    Google Scholar 

  177. A. A. Gureev, Shrews (Soricidae) of the World Fauna (Nauka, Leningrad, 1971) [in Russian].

    Google Scholar 

  178. A. A. Gureev, Insectivores (Mammalia, Insectivora): Hedgehogs, Moles, and Shrews (Erinaceidae, Talpidae, Soricidae) Vol. 4, No. 2 in Fauna of the USSR: Mammals (Nauka, Leningrad, 1979) [in Russian].

    Google Scholar 

  179. E. Haeckel, “Systematische Einleitung in die allgemeine Entwicklungsgesgichte,” in Generelle Morphologie der Organismen (Georg Reimer, Berlin, 1866), Vol. 2, pp. 17–160.

    Google Scholar 

  180. S. M. Hand, M. Novacek, H. Godthelp, and M. Archer, “First Eocene Bat from Australia,” J. Vertebr. Paleontol. 14(3), 375–381 (1994).

    Article  Google Scholar 

  181. A. H. Harris, “Fossil History of Shrews in North America,” in Evolution of Shrews, Ed. by J. M. Wójcik and M. Wolsan (Mammal Research Inst., Bialowieza, 1998), pp. 133–156.

    Google Scholar 

  182. J.-L. Hartenberger, “Les débuts de la radiation adaptive des Rodentia (Mammalia),” CR Acad. Sci. Paris, Sér. 2A 323, 631–637 (1996).

    Google Scholar 

  183. J.-L. Hartenberger, “Description de la radiation des Rodentia (Mammalia) du Paléocene supérieur au Miocene; incidences phylogénétiques,” CR Acad. Sci. Paris, Sér. 2A 326, 439–444 (1998).

    Google Scholar 

  184. R. F. Hecker, A. I. Osipova, and T. N. Bel’skaya, “The Fergana Gulf of the Paleogene Sea of Central Asia (Akad. Nauk SSSR, Moscow, 1962), Vol. 1; Vol. 2 [in Russian].

    Google Scholar 

  185. H. Heim de Balsac and F. Bourlière, “Ordre des Insectivores: Systématique,” in Traité de Zoologie Vol. 17 Mammifères: anatomie, éthologie, systématique, Ed. by P.-P. Grassé (Masson, Paris, 1954), pp. 1653–1697.

    Google Scholar 

  186. P. Hershkovitz, “Basic Crown Patterns and Cusp Homologies of Mammalian Teeth,” in Dental Morphology and Evolution, Ed. by A. A. Dahlberg. (Univ. Chicago Press, Chicago, 1971), pp. 95–150.

    Google Scholar 

  187. L. W. van den Hoek Ostende, “A Revised Generic Classification of the Galericini (Insectivora, Mammalia) with Some Remarks on Their Palaeobiogeography and Phylogeny,” Geobios 34(6), 681–695 (2001a).

    Article  Google Scholar 

  188. L. W. van den Hoek Ostende, “Insectivore Faunas from the Lower Miocene of Anatolia: Part 5. Talpidae,” Scripta Geol., No. 122, 1–45 (2001b).

  189. P. A. Holroyd, T. M. Bown, and D. M. Schankler, “Auroralestes, gen. nov., a Replacement Name for Eolestes Bown and Schankler, 1982, a Preoccupied Name,” J. Vertebr. Paleontol. 24(4), 979 (2004).

    Google Scholar 

  190. P. Holroyd and S. Strait, “New Geolabidid Lipotyphlans and Body Mass Distribution of ‘Insectivoran-grade’ Mammals in the Early Eocene of Wyoming,” J. Vertebr. Paleontol. 25(3 Suppl.), 71A (2005).

    Google Scholar 

  191. J. J. Hooker, “Mammalian Faunal Change across Paleocene-Eocene Transition in Europe,” in Late Paleocene-Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records (Columbia Univ. Press, New York, 1998), pp. 428–450.

    Google Scholar 

  192. J. J. Hooker, “Paleogene Mammals: Crises and Ecological Change,” in Biotic Response to Global Change: The Last 145 Million Years, Ed. by S. J. Culver and P. F. Rawson (Cambridge Univ. Press, Cambridge, 2000), pp. 333–349.

    Google Scholar 

  193. J. J. Hooker and D. Dashzeveg, “Evidence for Direct Mammalian Faunal Interchange between Europe and Asia near the Paleocene-Eocene Boundary,” Geol. Soc. Am. Spec. Pap., No. 369, 479–500 (2003).

  194. J. J. Hooker, D. E. Russell, and A. Phélizon, “A New Family of Plesiadapiformes (Mammalia) from the Old World Lower Paleocene,” Palaeontology 42(3), 377–407 (1999).

    Article  Google Scholar 

  195. J. Hough, “A New Insectivore from the Oligocene of the Wind River Basin, Wyoming, with Notes on the Taxonomy of the Oligocene Tenrecoidea,” J. Paleontol. 30(3), 531–541 (1956).

    Google Scholar 

  196. X. Huang, C. Li, M. Dawson, and L. Liu, “Hanomys malcolmi, a New Simplicidentate Mammal from the Paleocene of Central China: Its Relationships and Stratigraphic Implications,” Bull. Carnegie Mus. Natur. Hist., No. 36, 81–89 (2004).

  197. X.-S. Huang, “Fossil Erinaceidae (Insectivora, Mammalia) from the Middle Oligocene of Ulantatal, Alxa Zouqi, Nei Mongol,” Vertebr. Palasiat. 22(4), 305–309 (1984).

    Google Scholar 

  198. X.-S. Huang, “Mammalian Remains from the Late Paleocene of Jiashan, Anhui,” Vertebr. Palasiat. 41(1), 42–54 (2003).

    Google Scholar 

  199. X.-S. Huang and J.-J. Zheng, “A New Genus of Soricomorpha (Mammalia) from the Late Paleocene of Qianshan Basin, Anhui Province,” Vertebr. Palasiat. 40(2), 127–132 (2002).

    Google Scholar 

  200. J. P. Hunter and J. D. Archibald, “Mammals from the End of the Age of Dinosaurs in North Dakota and Southeastern Montana, with a Reappraisal of Geographic Differentiation among Lancian Mammals,” Geol. Soc. Am. Spec. Pap., No. 361, 191–216 (2002).

  201. J. Hürzeler, “Über einem dimyloiden Erinaceiden (Dimylechinus gen. nov.) aus dem Aquitanien der Limagne,” Eclog. Geol. Helv. 37(2), 460–467 (1944).

    Google Scholar 

  202. J. H. Hutchison, “Notes on Type Specimens of European Miocene Talpidae and a Tentative Classification of Old World Tertiary Talpidae (Insectivora: Mammalia),” Geobios 7(3), 211–256 (1974).

    Google Scholar 

  203. T. H. Huxley, “On the Application of the Laws of Evolution to the Arrangement of the Vertebrata, and More Particularly of the Mammalia,” Proc. R. Soc. London 43, 649–662 (1880).

    Google Scholar 

  204. J. C. W. Illiger, Prodromus Systematis Mammalium et Avium additis terminis zoographicis utriusque classis, eorumque variante Germanica (Sumptibus C. Salfeld, Berolini, 1811).

    Google Scholar 

  205. L. D. Ivy, “Systematics of Late Paleocene and Early Eocene Rodentia (Mammalia) from the Clarks Fork Basin, Wyoming,” Contrib. Mus. Paleontol. Univ. Michigan 28(2), 21–70 (1990).

    Google Scholar 

  206. J.-J. Jaeger, “Pantolestidae nouveaux (Mammalia, Insectivora) de l’Eocène moyen de Bouxwiller (Alsace),” Palaeovertebrata 3(3), 63–82 (1970).

    Google Scholar 

  207. G. L. Jepsen, “A Paleocene Rodent, Paramys atavus,” Proc. Am. Philosoph. Soc. 78, 291–301 (1937).

    Google Scholar 

  208. G. L. Jepsen and M. O. Woodburne, “Paleocene Hyracothere from Polecat Bench Formation, Wyoming,” Science 164(3879), 543–547 (1969).

    Google Scholar 

  209. H. Jow, C. Hudelot, M. Rattray, and P. G. Higgs, “Bayesian Phylogenetics Using an RNA Substitution Model Applied to Early Mammalian Evolution,” Mol. Biol. Evol. 19(9), 1591–1601 (2002).

    Google Scholar 

  210. N. N. Kalandadze and A. S. Rautian, “The System of Mammals and Historical Zoogeography,” in Phylogenetics of Mammals (Mosk. Gos. Univ., Moscow, 1992), pp. 44–152 [in Russian].

    Google Scholar 

  211. A. W. Kellner and M. C. McKenna, “A Leptictid Mammal from the Hsanda Gol Formation (Oligocene), Central Mongolia, with Comments on Some Palaeoryctidae,” Am. Mus. Novit., No. 3168, 1–13 (1996).

    Google Scholar 

  212. J. P. Kennet and L. D. Stoot, “Abrupt Deep-sea Warming, Palaeoceanographic Changes and Benthic Extinctions at the End of the Palaeocene,” Nature 353(6341), 225–229 (1991).

    Article  Google Scholar 

  213. Z. Kielan-Jaworowska, “Preliminary Description of Two New Eutherian Genera from the Late Cretaceous of Mongolia,” Palaeontol. Polon., No. 33, 5–16 (1975).

    Google Scholar 

  214. Z. Kielan-Jaworowska, “Evolution of the Therian Mammals in the Late Cretaceous of Asia: Part 4. Skull Structure in Kennalestes and Asioryctes,” Palaeontol. Polon., No. 42, 25–78 (1981).

  215. Z. Kielan-Jaworowska, “Evolution of the Therian Mammals in the Late Cretaceous of Asia: Part 5. Skull Structure in Zalambdalestidae,” Palaeontol. Polon., No. 46, 106–117 (1984).

    Google Scholar 

  216. Z. Kielan-Jaworowska, T. M. Bown, and J. A. Lillegraven, “Eutheria,” in Mesozoic Mammals: The First Two-Thirds of Mammalian History, Ed. by J. A. Lillegraven, Z. Kielan-Jaworowska, and W. A. Clemens (Univ. California Press, Berkeley, 1979), pp. 221–258.

    Google Scholar 

  217. Z. Kielan-Jaworowska, R. L. Cifelli, and Z.-X. Luo, Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure (Columbia Univ. Press, New York, 2004).

    Google Scholar 

  218. P. L. Koch, J. C. Zachos, and D. L. Dettman, “Stable Isotope Stratigraphy and Paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA),” Palaeogeogr. Palaeoclimatol. Palaeoecol. 115(1–4), 61–89 (1995).

    Article  Google Scholar 

  219. P. L. Koch, J. C. Zachos, and P. D. Gingerich, “Correlation between Isotope Records in Marine and Continental Carbon Reservoirs near Paleocene/Eocene Boundary,” Nature 358(6384), 319–322 (1992).

    Article  Google Scholar 

  220. W. von Koenigswald, “Das Skelett eines Pantolestiden (Proteutheria, Mamm.) aus dem mittleren Eozän von Messel bei Darmstadt,” Paläontol. Z. 54(3/4), 267–287 (1980).

    Google Scholar 

  221. P. E. Kondrashov, “A New Hyopsodontid (Mammalia, Condylarthra) from the Early Eocene of Mongolia,” New Mexico Mus. Natur. Hist. Sci. Bull., No. 26, 165–167 (2004).

  222. P. E. Kondrashov and A. K. Agadjanian, “New Material on the Genus Hyopsodus (Mammalia, Condylarthra) from the Eocene of Mongolia: Morphological Variability and Taxonomic Position,” Paleontol. Zh., No. 6, 64–72 (1999) [Paleontol. J. 33 (6), 667–676 (1999)].

  223. P. E. Kondrashov and A. V. Lopatin, “Late Paleocene Mixodonts from the Tsagan-Khushu Locality, Mongolia,” J. Vertebr. Paleontol. 23(3 Suppl.), 68A (2003).

    Google Scholar 

  224. P. E. Kondrashov, A. V. Lopatin, and S. G. Lucas, “Early Eocene (Bumbanian) Mammal Fauna from the Tsagan Khushu Locality (Mongolia),” J. Vertebr. Paleontol. 21(3 Suppl.), 69A (2001).

    Google Scholar 

  225. P. E. Kondrashov, A. V. Lopatin, and S. G. Lucas, “Late Paleocene (Gashatan) Nyctitheriidae (Mammalia, Lipotyphla) from Mongolia,” New Mexico Mus. Natur. Hist. Sci. Bull., No. 26, 185–193 (2004a).

  226. P. E. Kondrashov, A. V. Lopatin, and S. G. Lucas, “The Oldest Known Asian Artiodactyl (Mammalia),” New Mexico Mus. Natur. Hist. Sci. Bull., No. 26, 205–208 (2004b).

  227. P. E. Kondrashov and S. G. Lucas, “Palaeostylops iturus from the Upper Paleocene of Mongolia and the Status of Arctostylopida (Mammalia, Eutheria),” New Mexico Mus. Natur. Hist. Sci. Bull., No. 26, 195–203 (2004a).

  228. P. E. Kondrashov and S. G. Lucas, “Revised Distribution of Condylarths (Mammalia, Eutheria) in Asia,” New Mexico Mus. Natur. Hist. Sci. Bull., No. 26, 209–214 (2004b).

  229. W. W. Korth, “Fossil Small Mammals from the Harrison Formation (Late Arikareean: Earliest Miocene), Cherry County, Nebraska,” Ann. Carnegie Mus. 61(2), 69–131 (1992).

    Google Scholar 

  230. D. W. Krause and P. D. Gingerich, “Mammalian Fauna from the Douglass Quarry, Earliest Tiffanian (Late Paleocene) of the Eastern Crazy Mountain Basin, Montana,” Contrib. Mus. Paleontol. Univ. Michigan 26(9), 157–196 (1983).

    Google Scholar 

  231. D. W. Krause and M. C. Maas, “The Biogeographic Origins of Late Paleocene-Early Eocene Mammalian Immigrants to the Western Interior of North America,” Geol. Soc. Am. Spec. Pap., No. 243, 71–105 (1990).

  232. M. Kretzoi, “Kochictis centenii n. g. n. sp., ein altertumlicher Creodonte aus dem Oberoligozan Siebenburgens,” Foldtani Kozlony. 72, 190–195 (1943).

    Google Scholar 

  233. L. Krishtalka, “Early Tertiary Adapisoricidae and Erinaceidae (Mammalia, Insectivora) of North America,” Bull. Carnegie Mus. Natur. Hist., No. 1, 1–40 (1976a).

  234. L. Krishtalka, “North American Nyctitheriidae (Mammalia, Insectivora),” Ann. Carnegie Mus. 46(2), 7–28 (1976b).

    Google Scholar 

  235. L. Krishtalka and T. Setoguchi, “Paleontology and Geology of the Badwater Creek Area, Central Wyoming: Part 13. The Late Eocene Insectivora and Dermoptera,” Ann. Carnegie Mus. 46(7), 71–99 (1977).

    Google Scholar 

  236. E. A. Lacey, J. L. Patton, and N. Cameron, “Life Underground: The Biology of Subterranean Rodents (Univ. Chicago Press, Chicago, 2000).

    Google Scholar 

  237. P. Langer, “The Digestive Tract and Life History of Small Mammals,” Mammal. Rev. 32(2), 107–131 (2002).

    Article  Google Scholar 

  238. A. V. Lavrov, “A New Genus Neoparapterodon (Creodonta, Hyaenodontidae) from the Khaychin-Ula-2 Locality (Khaichin Formation, Middle-Upper Eocene, Mongolia) and the Systematic Position of the Asiatic Pterodon Representatives,” Paleontol. Zh., No. 5, 95–107 (1996) [Paleontol. J. 30 (5), 593–604 (1996)].

  239. A. V. Lavrov and A. O. Averianov, “The Oldest Asiatic Hyaenodontidae (Mammalia, Creodonta) from the Early Eocene of the Southern Fergana Basin (Andarak-2 Locality),” Paleontol. Zh., No. 2, 96–102 (1998) [Paleontol. J. 32 (2), 200–205 (1998)].

  240. A. V. Lavrov and A. V. Lopatin, “The Earliest Hyaenodontids (Hyaenodontidae, Creodonta) of Asia,” in Theriofauna of Russia and Adjacent Territories: Materials of International Conference (7th Congress of Theriological Society of Russia), Moscow, February 6–7, 2003 (Moscow, 2003), pp. 192–193 [in Russian].

  241. A. V. Lavrov and A. V. Lopatin, “A New Species of Arfia (Hyaenodontidae, Creodonta) from the Basal Eocene of Mongolia,” Paleontol. Zh., No. 4, 95–103 (2004) [Paleontol. J. 38 (4), 448–457 (2004)].

  242. W. Leche, “Über die Säugethiergattung Galeopithecus,” Kongl. Svenska Vetens-Acad. Handl. 21(11), 1–92 (1885).

    Google Scholar 

  243. E. P. Lessa, “Morphological Evolution of Subterranean Mammals: Integrating Structural, Functional, and Ecological Perspectives,” in Evolution of Subterranean Mammals at the Organismal and Molecular Levels, Ed. by E. Nevo, O. A. Reig (Alan R. Liss Inc., New York, 1990), pp. 211–238.

    Google Scholar 

  244. C. Li, C. Chiu, D. Yan, and S. Hsien, “Notes on Some Early Eocene Mammalian Fossils of Hengtung, Hunan,” Vertebr. Palasiat. 17(1), 71–80 (1979).

    Google Scholar 

  245. J. A. Lillegraven, “Latest Cretaceous Mammals of Upper Part of Edmonton Formation of Alberta, Canada, and Review of Marsupial-Placental Dichotomy in Mammalian Evolution,” Paleontol. Contrib. Univ. Kansas, No. 50, 1–122 (1969).

  246. J. A. Lillegraven, M. C. McKenna, and L. Krishtalka, “Evolutionary Relationships of Middle Eocene and Younger Species of Centetodon (Mammalia, Insectivora, Geolabididae) with a Description of the Dentition of Ankylodon (Adapisoricidae),” Univ. Wyoming Publ., No. 45, 1–115 (1981).

  247. J. A. Lillegraven and A. R. Tabrum, “A New Species of Centetodon (Mammalia, Insectivora, Geolabididae) from Southwestern Montana and Its Biogeographical Implications,” Contrib. Geol. Univ. Wyoming 22(1), 57–73 (1983).

    Google Scholar 

  248. Y. H. Lin, P. A. McLenachan, M. J. Phillips, et al., “Four New Mitochondrial Genomes and the Increased Stability of Evolutionary Trees of Mammals from Improved Taxon Sampling,” Mol. Biol. 19(12), 2060–2070 (2002).

    Google Scholar 

  249. E. H. Lindsay, “Correlation of Mammalian Biochronology with the Geomagnetic Polarity Time Scale,” Boll. Soc. Paleontol. Ital. 40(2), 225–233 (2001).

    Google Scholar 

  250. C. Linnaeus, Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, Vol. 1 Regnum animale. Editio decima, reformata (Laurentii Salvii, Stockholm, 1758).

    Google Scholar 

  251. F. R. Liu, M. M. Miyamoto, N. P. Freire, et al., “Molecular and Morphological Supertrees for Eutherian (Placental) Mammals,” Science 291(5509), 1786–1789 (2001).

    Article  Google Scholar 

  252. A. V. Lopatin, “The Stratigraphy and Small Mammals of the Aral Formation, Altynshokysu Locality, North Aral Area,” Stratigr. Geol. Korrelyatsiya 4(2), 65–79 (1996) [Stratigr. Geol. Correlation 4 (2), 166–180 (1996)].

    Google Scholar 

  253. A. V. Lopatin, “New Oligocene Didymoconidae (Mesonychia, Mammalia) from Mongolia and Kazakhstan,” Paleontol. Zh., No. 1, 111–120 (1997) [Paleontol. J. 31 (1), 108–119 (1997)].

  254. A. V. Lopatin, “Oligocene and Early Miocene Insectivores (Mammalia) from Western Kazakhstan,” Paleontol. Zh., No. 2, 66–75 (1999) [Paleontol. J. 33 (2), 182–191 (1999)].

  255. A. V. Lopatin, “The Skull Structure of Archaeoryctes euryalis sp. nov. (Didymoconidae, Mammalia) from the Paleocene of Mongolia and the Taxonomic Position of the Family,” Paleontol. Zh., No. 3, 97–107 (2001a) [Paleontol. J. 35 (3), 320–329 (2001)].

  256. A. V. Lopatin, “The Earliest Hapalodectes (Mesonychia, Mammalia) from the Paleocene of Mongolia,” Paleontol. Zh., No. 4, 90–96 (2001b) [Paleontol. J. 35 (4), 426–432 (2001)].

  257. A. V. Lopatin, “The Largest Asian Amphechinus (Erinaceidae, Insectivora, Mammalia) from the Oligocene of Mongolia,” Paleontol. Zh., No. 3, 75–80 (2002a) [Paleontol. J. 36 (3), 302–306 (2002)].

  258. A. V. Lopatin, “An Oligocene Mole (Talpidae, Insectivora, Mammalia) from Mongolia,” Paleontol. Zh., No. 5, 89–92 (2002b) [Paleontol. J. 36 (5), 531–534 (2002)].

  259. A. V. Lopatin, “The Earliest Shrew (Soricidae, Mammalia) from the Middle Eocene of Mongolia,” Paleontol. Zh., No. 6, 78–87 (2002c) [Paleontol. J. 36 (6), 650–659 (2002)].

  260. A. V. Lopatin, “Middle Eocene Insectivores from the Khaychin-Ula Locality (Mongolia),” in Theriofauna of Russia and Adjacent Territories: Materials of International Conference (7th Congress of Theriological Society of Russia), Moscow, February 6–7, 2003 (Moscow, 2003a), pp. 199–200 [in Russian].

  261. A. V. Lopatin, “A Zalambdodont Insectivore of the Family Apternodontidae (Insectivora, Mammalia) from the Middle Eocene of Mongolia,” Paleontol. Zh., No. 2, 82–91 (2003b) [Paleontol. J. 37 (2), 187–195 (2003)].

  262. A. V. Lopatin, “A New Species of Ardynictis (Didymoconidae, Mammalia) from the Middle Eocene of Mongolia,” Paleontol. Zh., No. 3, 81–89 (2003c) [Paleontol. J. 37 (3), 303–311 (2003)].

  263. A. V. Lopatin, “Insectivores of the Oligocene Shandgolian Fauna of Mongolia,” in Systematics, Phylogeny, and Paleontology of Small Mammals, Ed. by A. O. Averianov and N. I. Abramson (Zool. Inst. Ross. Akad. Nauk, St. Petersburg, 2003d), pp. 132–134 [in Russian].

    Google Scholar 

  264. A. V. Lopatin, “Problems and Perspectives of the Study of Paleogene Insectivores,” in Systematics, Phylogeny, and Paleontology of Small Mammals, Ed. by A. O. Averianov and N. I. Abramson (Zool. Inst. Ross. Akad Nauk, St. Petersburg, 2003e), pp. 135–139 [in Russian].

    Google Scholar 

  265. A. V. Lopatin, “A New Genus of the Erinaceidae (Insectivora, Mammalia) from the Oligocene of Mongolia,” Paleontol. Zh., No. 6, 94–104 (2003f) [Paleontol. J. 37 (6), 653–664 (2003)].

  266. A. V. Lopatin, “Characteristic Features of the Development of Asian Small Mammal Fauna in the Early Paleogene,” in Ecosystem Rearrangement and Biosphere Evolution (Paleontol. Inst. Ross. Akad Nauk, Moscow, 2004a), No. 6, pp. 87–96 [in Russian].

    Google Scholar 

  267. A. V. Lopatin, “New Early Miocene Shrews (Soricidae, Mammalia) from Kazakhstan,” Paleontol. Zh., No. 2, 93–101 (2004b) [Paleontol. J. 38 (2), 211–219 (2004)].

  268. A. V. Lopatin, “A New Genus of the Galericinae (Erinaceidae, Insectivora, Mammalia) from the Middle Eocene of Mongolia,” Paleontol. Zh., No. 3, 84–90 (2004c) [Paleontol. J. 38 (3), 319–326 (2004)].

  269. A. V. Lopatin, “A Review of Early Paleogene Insectivores and Insectivore-like Mammals of Mongolia,” in International Conference on the Problems of Paleontology of Central Asia (Devoted to 35th Anniversary of the Joint Russian-Mongolian Paleontological Expedition) (Paleontol. Inst. Ross. Akad Nauk, Moscow, 2004d), pp. 39–41 [in Russian].

    Google Scholar 

  270. A. V. Lopatin, “The First Finding of Geolabididae (Soricomorpha, Mammalia) in Asia (Upper Paleocene of Mongolia),” Paleontol. Zh., No. 6, 81–88 (2004e) [Paleontol. J. 38 (6), 672–679 (2004)].

  271. A. V. Lopatin, “Early Miocene Small Mammals from the North Aral Region (Kazakhstan) with Special Reference to Their Biostratigraphic Significance,” Paleontol. J. 38(Suppl. 3), S217–S323 (2004f).

    Google Scholar 

  272. A. V. Lopatin, “Late Paleogene Erinaceidae (Insectivora, Mammalia) from the Ergilin Dzo Locality, Mongolia,” Paleontol. Zh., No. 1, 89–95 (2005a) [Paleontol. J. 39 (1), 85–92 (2005)].

  273. A. V. Lopatin, “A New Soricomorph Insectivore (Soricomorpha, Mammalia) from the Eocene of Mongolia and the Origin of Shrews (Soricidae),” Dokl. Akad. Nauk 401(6) 842–844 (2005b) [Dokl. Biol. Sci. 401, 144–146 (2005)].

    Google Scholar 

  274. A. V. Lopatin, “Early Paleogene Insectivores and Modern Taxonomic System of Lipotyphla,” in Modern Paleontology: Classical and New Methods (Paleontol. Inst. Ross. Akad. Nauk, Moscow, 2005c), pp. 133–154 [in Russian].

    Google Scholar 

  275. A. V. Lopatin and A. O. Averianov, “A New Species of Tribosphenomys (Mammalia: Rodentiaformes) from the Paleocene of Mongolia,” New Mexico Mus. Natur. Hist. Sci. Bull., No. 26, 169–175 (2004a).

  276. A. V. Lopatin and A. O. Averianov, “New Palaeoryctidae (Mammalia) from the Eocene of Kyrgyzstan and Mongolia,” Paleontol. Zh., No. 5, 87–93 (2004b) [Paleontol. J. 38 (5), 556–562 (2004)].

  277. A. V. Lopatin and A. O. Averianov, “The Earliest Rodents of the Genus Tribosphenomys from the Paleocene of Central Asia,” Dokl. Akad. Nauk. 397(5), 714–715 (2004c) [Dokl. Biol. Sci. 397, 336–337 (2004)].

    Google Scholar 

  278. A. V. Lopatin and A. O. Averianov, “Discovery of the Earliest Lagomorph in the Basal Eocene of Mongolia,” in 2nd All-Russia Scientific Schools of Young Paleontologists on Modern Paleontology: Classical and New Methods (Paleontol. Inst. Ross. Akad. Nauk, Moscow, 2005), pp. 42–44 [in Russian].

    Google Scholar 

  279. A. V. Lopatin and A. O. Averianov, “Eocene Lagomorpha (Mammalia) of Asia: 2. Strenulagus and Gobiolagus (Strenulagidae),” Paleontol. Zh., No. 2, 79–88 (2006) [Paleontol. J. 40 (2), 198–206 (2006)].

  280. A. V. Lopatin and P. E. Kondrashov, “Late Paleocene Mixodonts from the Tsagan-Khushu Locality (Mongolia), with Remarks on the Classification of the Order,” in Systematics and Phylogeny of Rodents and Lagomorphs (Moscow, 2000), pp. 97–100 [in Russian].

  281. A. V. Lopatin and P. E. Kondrashov, “The Skull Structure of Sinomylus (Mixodontia),” J. Vertebr. Paleontol. 23(3 Suppl.), 72A–73A (2003).

    Google Scholar 

  282. A. V. Lopatin and P. E. Kondrashov, “Sarcodontinae, a New Subfamily of Micropternodontid Insectivores from the Early Paleocene-Middle Eocene of Asia,” New Mexico Mus. Natur. Hist. Sci. Bull., No. 26, 177–184 (2004).

  283. A. V. Lopatin, P. E. Kondrashov, and S. G. Lucas, “Late Paleocene (Gashatan) Mammal Fauna from the Tsagan Khushu Locality (Mongolia),” J. Vertebr. Paleontol. 21(3 Suppl.), 74A (2001).

    Google Scholar 

  284. A. V. Lopatin and A. S. Tesakov, “The Fossil Shrew Cretasorex arkhangelskyi Nessov et Gureev, 1981 from Uzbekistan—The Systematic Position among Soricidae, Taxonomic Status and Geological Age,” Russ. J. Theriol. 3(1), 5–8 (2004).

    Google Scholar 

  285. A. V. Lopatin and V. S. Zazhigin, “New Brachyericinae (Erinaceidae, Insectivora, Mammalia) from the Oligocene and Miocene of Asia,” Paleontol. Zh., No. 1, 64–77 (2003) [Paleontol. J. 37 (1), 62–75 (2003)].

  286. S. G. Lucas, “Gobiatherium (Mammalia: Dinocerata) from the Middle Eocene of Asia: Taxonomy and Biochronological Significance,” Paläontol. Z. 74(4), 591–600 (2001).

    Google Scholar 

  287. S. G. Lucas, “Eocene Pantolesta from the Zaysan Basin, Kazakstan,” New Mexico Mus. Natur. Hist. Sci. Bull., No. 26, 227–229 (2004).

  288. S. G. Lucas and P. E. Kondrashov, “Early Eocene (Bumbanian) Perissodactyls from Mongolia and Their Biochronological Significance,” New Mexico Mus. Natur. Hist. Sci. Bull., No. 26, 215–220 (2004).

  289. Z. X. Luo, A. W. Crompton, and A. L. Sun, “New Mammaliaform from the Early Jurassic and Evolution of Mammalian Characteristic,” Science 292(5521), 1535–1540 (2001).

    Article  Google Scholar 

  290. J. R. Macdonald, “Additions to the Whitneyan Fauna of South Dakota,” J. Paleontol. 25(3), 257–265 (1951).

    Google Scholar 

  291. R. D. E. MacPhee, C. Flemming, and D. P. Lunde, “Last Occurrence of the Antillean Insectivoran Nesophontes: New Radiometric Dates and Their Interpretation,” Am. Mus. Novit., No. 3261, 1–20 (1999).

    Google Scholar 

  292. R. D. E. MacPhee and M. J. Novacek, “Definition and Relationships of Lipotyphla,” in Mammal Phylogeny: Placentals, Ed. by F. S. Szalay, M. J. Novacek, and M. C. McKenna (Springer, New York, 1993), pp. 13–31.

    Google Scholar 

  293. R. D. E. MacPhee, M. J. Novacek, and G. Storch, “Basicranial Morphology of Early Tertiary Erinaceomorphs and the Origin of Primates,” Am. Mus. Novit., No. 2921, 1–42 (1988).

    Google Scholar 

  294. O. Madsen, M. Scally, Ch. J. Douady, et al., “Parallel Adaptive Radiations in Two Major Clades of Placental Mammals,” Nature, 409(6820), 610–614 (2001).

    Article  Google Scholar 

  295. O. Madsen, D. Willemsen, B. M. Ursing, et al., “Molecular Evolution of the Mammalian Alpha 2B Adrenergic Receptor,” Mol. Biol. Evol. 19(12), 2150–2160 (2002).

    Google Scholar 

  296. M. J. Malia, R. M. Adkins, and M. W. Allard, “Molecular Support for Afrotheria and the Polyphyly of Lipotyphla Based on Analyses of the Growth Hormone Receptor Gene,” Mol. Phylogenet. Evol. 24(1), 91–101 (2002).

    Article  Google Scholar 

  297. O. C. Marsh, “Preliminary Description of New Tertiary Mammals,” Am. J. Sci., Ser. 3, 4 104(1), 122–128 (1872); 104 (2), 202–224 (1872).

    Google Scholar 

  298. O. C. Marsh, “Discovery of Cretaceous Mammalia,” Am. J. Sci. 38, 81–92 (1889).

    Google Scholar 

  299. L. G. Marshall and Z. Kielan-Jaworowska, “Relationships of the Dog-like Marsupials, Deltatheroidans and Early Tribosphenic Mammals,” Lethaia, No. 25, 361–374 (1992).

  300. M. Mason, “Morphology of the Middle Ear of Golden Moles (Chrysochloridae),” J. Zool. 260, 391–403 (2003).

    Article  Google Scholar 

  301. C. C. Mathis, “Quelques insectivores primitifs nouveaux de l’Eocène supérieur du sud de la France,” Bull. Mus. Nat. Hist. Natur., Sér. 4C 11(1), 33–64 (1989).

    Google Scholar 

  302. W. D. Matthew, “Additional Observations on the Creodonta,” Bull. Am. Mus. Natur. Hist. 14(1), 1–38 (1901).

    Google Scholar 

  303. W. D. Matthew, “The Fauna of Titanotherium Beds of Pipestone Springs, Montana,” Bull. Am. Mus. Natur. Hist. 19(6), 197–226 (1903).

    Google Scholar 

  304. W. D. Matthew, “Carnivora and Insectivora of the Bridger Basin, Middle Eocene,” Mem. Am. Mus. Natur. Hist. 9, 289–567 (1909).

    Google Scholar 

  305. W. D. Matthew, “On the Skull of Apternodus and the Skeleton of a New Artiodactyl,” Bull. Am. Mus. Natur. Hist. 28(5), 33–42 (1910).

    Google Scholar 

  306. W. D. Matthew, “A Zalambdodont Insectivore from the Basal Eocene,” Bull. Am. Mus. Natur. Hist. 32(17), 307–314 (1913).

    Google Scholar 

  307. W. D. Matthew, “A New and Remarkable Hedgehog from the Later Tertiary of Nevada,” Univ. Calif. Publ. Geol. Sci. 18(4), 92–102 (1929).

    Google Scholar 

  308. W. D. Matthew and W. Granger, “A Revision of the Lower Eocene Wasatch and Wind River Faunas: 5. Insectivora (Continued), Glires, Edentata,” Bull. Am. Mus. Natur. Hist. 38, 565–657 (1918).

    Google Scholar 

  309. W. D. Matthew and W. Granger, “New Insectivores and Ruminants from the Tertiary of Mongolia, with Remarks on the Correlation,” Am. Mus. Novit., No. 105, 1–7 (1924).

    Google Scholar 

  310. W. D. Matthew and W. Granger, “Fauna and Correlation of the Gashato Formation of Mongolia,” Am. Mus. Novit., No. 189, 1–12 (1925a).

  311. W. D. Matthew and W. Granger, “New Creodonts and Rodents from the Ardyn Obo Formation of Mongolia,” Am. Mus. Novit., No. 193, 1–7 (1925b).

  312. W. D. Matthew and W. Granger, “New Mammals from the Irdin Manha Eocene of Mongolia,” Am. Mus. Novit., No. 198, 1–10 (1925c).

  313. W. D. Matthew, W. Granger, and G. G. Simpson, “Additions to the Fauna of the Gashato Formation of Mongolia,” Am. Mus. Novit., No. 376, 1–12 (1929).

    Google Scholar 

  314. W. D. Matthew and C. C. Mook, “New Fossil Mammals from the Deep River Beds of Montana,” Am. Mus. Novit., No. 601, 1–7 (1933).

    Google Scholar 

  315. S. B. McDowell, “The Greater Antillean Insectivores,” Bull. Am. Mus. Natur. Hist. 115(3), 113–214 (1958).

    Google Scholar 

  316. M. C. McKenna, “The Geolabidinae, a New Subfamily of Early Cenozoic Erinaceoid Insectivores,” Univ. Calif. Publ. Geol. Sci. 37(2), 131–164 (1960).

    Google Scholar 

  317. M. C. McKenna, “New Evidence against Tupaioid Affinities of the Mammalian Family Anagalidae,” Am. Mus. Novit., No. 2158, 1–16 (1963).

    Google Scholar 

  318. M. C. McKenna, “Leptacodon, an American Paleocene Nyctithere (Mammalia, Insectivora),” Am. Mus. Novit., No. 2317, 1–12 (1968).

  319. M. C. McKenna, “Toward a Phylogenetic Class fication of the Mammalia,” in Phylogeny of the P imates: A Multidisciplinary Approach, Ed. by W. P. Luckett and F. S. Szalay (Plenum Press, New York, 1975a), pp. 21–46.

    Google Scholar 

  320. M. C. McKenna, “Fossil Mammals from Early Eocene North Atlantic Land Continuity,” Ann. Missouri Botan. Garden. 62, 335–353 (1975b).

    Article  Google Scholar 

  321. M. C. McKenna, “Eocene Paleolatitude, Climate and Mammals of Ellesmere Island,” Palaeogeogr. Palaeoclimatol. Palaeoecol. 30, 349–362 (1980).

    Article  Google Scholar 

  322. M. C. McKenna, “Cenozoic Paleogeography of North Atlantic Land Bridges,” in Structure and Development of the Greenland-Scotland Ridge, Ed. by M. H. P. Bott, S. Saxov, M. Talwani, and J. Theide (Plenum, New York, 1983), pp. 351–399.

    Google Scholar 

  323. M. C. McKenna and S. K. Bell, Classification of Mammals above the Species Level (Columbia Univ. Press, New York, 1997).

    Google Scholar 

  324. M. C. McKenna and F. Haase, “Marsholestes, a New Name for the Eocene Insectivoran Myolestes Matthew, 1909, not Myolestes Brèthes, 1904,” J. Vertebr. Paleontol. 12(2), 256 (1992).

    Article  Google Scholar 

  325. M. C. McKenna, J. S. Mellett, and F. S. Szalay, “Relationships of the Cretaceous Mammal Deltatheridium,” J. Paleontol. 45(3), 441–442 (1971).

    Google Scholar 

  326. M. C. McKenna and J. Meng, “A Primitive Relative of Rodents from the Chinese Paleocene,” J. Vertebr. Paleontol. 21(3), 565–572 (2001).

    Google Scholar 

  327. M. C. McKenna, P. Robinson, and D. W. Taylor, “Notes on Eocene Mammalia and Mollusca from Tabernacle Butte, Wyoming,” Am. Mus. Novit., No. 2102, 1–33 (1962)

    Google Scholar 

  328. M. C. McKenna and G. G. Simpson, “A New Insectivore from the Middle Eocene of Tabernacle Butte, Wyoming,” Am. Mus. Novit., No. 1952, 1–12 (1959).

  329. M. C. McKenna, X. Xue, and M. Zhou, “Prosarcodon lonanensis, a New Paleocene Micropternodontid Palaeoryctoid Insectivore from Asia,” Am. Mus. Novit., No. 2780, 1–17 (1984).

    Google Scholar 

  330. P. Mein and E. Martín-Suarez, “Galerix iberica sp. nov. (Erinaceidae, Insectivora, Mammalia) from the Late Miocene and Early Pliocene of the Iberian Peninsula,” Geobios 26(6), 723–730 (1993).

    Google Scholar 

  331. J. S. Mellett, “The Oligocene Hsanda Gol Formation of Mongolia: A Revised Faunal List,” Am. Mus. Novit., No. 2318, 1–16 (1968).

  332. J. S. Mellett and F. S. Szalay, “Kennatherium shirensis (Mammalia, Palaeoryctoidea), A New Didymoconid from the Eocene of Asia,” Am. Mus. Novit., No. 2342, 1–7 (1968).

    Google Scholar 

  333. J. Meng, “A New Species of Didymoconidae and Comments on Related Locality and Stratigraphy,” Vertebr. Palasiat. 28(3), 206–217 (1990).

    Google Scholar 

  334. J. Meng, S. Ting, and J. A. Schiebout, “The Cranial Morphology of the Early Eocene Didymoconid (Mammalia, Insectivora),” J. Vertebr. Paleontol. 14(4), 534–551 (1994a).

    Article  Google Scholar 

  335. J. Meng and A. R. Wyss, “Enamel Microstructure of Tribosphenomys (Mammalia, Glires): Character Analysis and Systematic Implication,” J. Mammal. Evol. 2(3), 185–203 (1994).

    Article  Google Scholar 

  336. J. Meng and A. R. Wyss, “The Morphology of Tribosphenomys (Rodentiaformes, Mammalia): Character Phylogenetic Implication for Basal Glires,” J. Mammal. Evol. 8(1), 1–71 (2001).

    Article  Google Scholar 

  337. J. Meng, A. R. Wyss, M. R. Dawson, and R. Zhai, “Primitive Fossil Rodent from Inner Mongolia and Its Implications for Mammalian Phylogeny,” Nature 370(6485), 134–136 (1994b).

    Article  Google Scholar 

  338. J. Meng, A. R. Wyss, Y. Hu, et al., “Glires (Mammalia) from the Late Paleocene Bayan Ulan Locality of Inner Mongolia,” Am. Mus. Novit., No. 3473, 1–25 (2005).

    Google Scholar 

  339. J. Meng, J. Ye, W.-Y. Wu, and Sh.-D. Bi, “The Petrosal Morphology of a Late Oligocene Erinaceid from North Junggar Basin,” Vertebr. Palasiat. 37(4), 300–308 (1999).

    Google Scholar 

  340. J. Meng, R. Zhai, and A. R. Wyss, “The Late Paleocene Bayan Ulan Fauna of Inner Mongolia, China,” Bull. Carnegie Mus. Natur. Hist., No. 34, 148–185 (1998).

  341. H. Menu and B. Sigé, “Nyctalodontie et myotodontie, importants caracteres de grades évolutifs ches les chiropteres entomophages,” CR Acad. Sci. Paris, Sér. D 272, 1735–1738 (1971).

    Google Scholar 

  342. P. Missiaen and T. Smith, “A New Paleocene Nyctitheriid Insectivore from Inner Mongolia (China) and the Origin of Asian Nyctitheriids,” Acta Palaeontol. Polon. 50(3), 513–522 (2005).

    Google Scholar 

  343. G. S. Morgan and J. A. Ottenwalder, “A New Extinct Species of Solenodon (Mammalia: Insectivora: Solenodontidae) from the Late Quaternary of Cuba,” Ann. Carnegie Mus. 62(2), 151–164 (1993).

    Google Scholar 

  344. R. J. Morley, “Interplate Dispersal Paths for Megathermal Angiosperms,” Persp. Plant Ecol. Evol. Syst. 6(1–2), 5–20 (2003).

    Article  Google Scholar 

  345. M. Morlo and D. Nagel, “New Didymoconidae (Mammalia) from the Oligocene of Central Mongolia and First Information on the Tooth Eruption Sequence of the Family,” Neues Jahrb. Geol. Paläontol. Abh. 223(1), 123–144 (2002).

    Google Scholar 

  346. H. W. Mossman, Vertebrate Fetal Membranes (Rutgers Univ. Press, New Brunswick, 1987).

    Google Scholar 

  347. S. K. Mouchaty, A. Gullberg, A. Janke, and U. Arnason, “Phylogenetic Position of the Tenrecs (Mammalia: Tenrecidae) of Madagascar Based on Analysis of the Complete Mitochondrial Genome Sequences of Echinops telfairi,” Zool. Scripta. 29(4), 307–317 (2000b).

    Article  Google Scholar 

  348. S. K. Mouchaty, A. Gullberg, A. Janke, U. Arnason, “The Phylogenetic Position of the Talpidae within Eutheria Based on Analysis of Complete Mitochondrial Sequences,” Mol. Biol. Evol. 17(1), 60–67 (2000a).

    Google Scholar 

  349. W. J. Murphy, E. Eizirik, S. J. O’Brien, et al., “Molecular Phylogenetics and the Origins of Placental Mammals,” Nature 409(6820), 614–618 (2001).

    Article  Google Scholar 

  350. L. A. Nessov, “Results of a Survey and Study of Cretaceous and Early Paleogene Mammals in the USSR, Ezheg. Vsesoyuzn. Paleontol. O-va 30, 199–218 (1987).

    Google Scholar 

  351. L. A. Nessov, Nonmarine Vertebrates from the Cretaceous of Northern Eurasia (Botan. Inst. Ross. Akad. Nauk, St. Petersburg, 1997).

    Google Scholar 

  352. L. A. Nessov, J. D. Archibald, and Z. Kielan-Jaworowska, “Ungulate-like Mammals from the Late Cretaceous of Uzbekistan and a Phylogenetic Analysis of Ungulatomorpha,” Bull. Carnegie Mus. Natur. Hist., No. 34, 40–88 (1998).

    Google Scholar 

  353. L. A. Nessov and A. A. Gureev, “A Find of a Jaw of the Earliest Shrew in the Upper Cretaceous of the Kyzyl Kum Desert,” Dokl. Akad. Nauk SSSR 257(4), 1002–1004 (1981).

    Google Scholar 

  354. L. A. Nessov, D. Sigogneau-Russell, and D. E. Russell, “A Survey of Cretaceous Tribosphenic Mammals from Middle Asia (Uzbekistan, Kazakhstan and Tajikistan), of Their Geological Setting, Age and Faunal Environment,” Palaeovertebrata 23(1–4), 51–92 (1994).

    Google Scholar 

  355. E. Nevo, “Mammalian Evolution Underground: The Ecological-Genetic-Phenetic Interfaces,” Acta Theriol. (Suppl. 3), 9–31 (1995).

  356. A. F. H. von Nievelt and K. K. Smith, “To Replace or not to Replace: The Significance of Reduced Functional Tooth Replacement in Marsupial and Placental Mammals,” Paleobiology 31(2), 324–346 (2005).

    Article  Google Scholar 

  357. M. Nikaido, Y. Cao, M. Harada, et al., “Mitochondrial Phylogeny of Hedgehogs and Monophyly of Eulipotyphla,” Mol. Phylogenet. Evol. 28(2), 276–284 (2003).

    Article  Google Scholar 

  358. M. Nikaido, K. Kawai, Y. Cao, et al., “Maximum Likelihood Analysis of the Complete Mitochondrial Genomes of Eutherians and a Reevaluation of the Phylogeny of Bats and Insectivores,” Mol. Evol. 53(4–5), 508–516 (2001).

    Article  Google Scholar 

  359. V. S. Nikolskii, “The Structure of the Masticatory Apparatus in Shrews (Soricidae),” Zool. Zh. 62(7), 1077–1086 (1983).

    Google Scholar 

  360. V. S. Nikolskii, “Adaptive Changes of the Musculoskeletal System in the Evolution of Soricomorpha: Jaw Apparatus,” Zool. Zh. 69(3), 81–90 (1990).

    Google Scholar 

  361. M. J. Novacek, “Insectivora and Proteutheria of the Later Eocene (Uintan) of San Diego County, California,” Contrib. Sci. Natur. Hist. Mus. Los Angeles County, No. 283, 1–52 (1976).

  362. M. J. Novacek, “A Review of Paleocene and Eocene Leptictidae (Eutheria: Mammalia) from North America,” Paleobios 24, 1–42 (1977).

    Google Scholar 

  363. M. J. Novacek, “The Sespedectinae, a New Subfamily of Hedgehog-like Insectivores,” Am. Mus. Novit., No. 2833, 1–24 (1985).

    Google Scholar 

  364. M. J. Novacek, “The Skull of Leptictid Insectivorans and the Higher-level Classification of Eutherian Mammals,” Bull. Am. Mus. Natur. Hist. 183(1), 1–112 (1986).

    Google Scholar 

  365. M. J. Novacek, T. M. Bown, and D. Schankler, “On the Classification of the Early Tertiary Erinaceomorpha (Insectivora, Mammalia),” Am. Mus. Novit., No. 2813, 1–27 (1985).

    Google Scholar 

  366. M. J. Novacek, A. R. Wyss, and M. C. McKenna, “The Major Groups of Eutherian Mammals,” in The Phylogeny and Classification of the Tetrapods, Vol. 2. Mammals, Ed. by M. J. Benton (Clarendon, Oxford, 1988), pp. 31–71.

    Google Scholar 

  367. R. M. Nowak, Walkers’s Mammals of the World (Johns Hopkins Univ. Press, Baltimore, 1991), Vol. 1.

    Google Scholar 

  368. M. A. O’Leary, “Morphology of the Humerus of Hapalodectes (Mammalia, Mesonychia),” Am. Mus. Novit., No. 3242, 1–6 (1998).

  369. M. A. O’Leary and K. D. Rose, “Postcranial Skeleton of the Early Eocene Mesonychid Pachyaena (Mammalia, Mesonychia),” J. Vertebr. Paleontol. 15(2), 401–430 (1995).

    Article  Google Scholar 

  370. H. F. Osborn, The Age of Mammals in Europe, Asia, and North America (Macmillan Co., New York, 1910).

    Google Scholar 

  371. Z. E. Özkan, “Macro-anatomical Investigations on the Hedgehog Skeleton (Erinaceus europaeus): 1. Ossa membri thoracici,” Turk. J. Vet. Anim. Sci. 28, 271–274 (2004).

    Google Scholar 

  372. B. Patterson and P.O. McGrew, “A Soricid and Two Erinaceids from the White River Oligocene,” Field Mus. Natur. Hist., Geol. Ser. 6, 245–272 (1937).

    Google Scholar 

  373. C. de Paula Couto, Tratado de paleomastozoologia (Acad. Brasil., Rio de Janeiro, 1979).

    Google Scholar 

  374. I. Ya. Pavlinov, Systematics of Recent Mammals (Mosk. Gos. Univ., Moscow, 2003) [in Russian].

    Google Scholar 

  375. W. Peters, “Über die Säugethier-Gattung Solenodon,” (Abh. König. Akad. Wiss. Berlin, 1864), pp. 1–22.

    Google Scholar 

  376. H.-U. Pfretzschner, “Buxolestes minor n. sp.—ein neuer Pantolestide aus der eozänen Messel-Formation,” Cour. Forsch. Senckenb. 216, 19–29 (1999).

    Google Scholar 

  377. P. D. Polly, S. C. Le Comber, and T. M. Burland, “On the Occlusal Fit of Tribosphenic Molars: Are We Underestimating Species Diversity in the Mesozoic?” J. Mammal. Evol. 12(1–2), 283–299 (2005).

    Article  Google Scholar 

  378. A. Pomel, “Etudes sur les Carnassiers Insectivores (extrait): Part 2. Classification des Insectivores,” Arch. Sci. Phys. Natur. 9, 244–257 (1848).

    Google Scholar 

  379. D. R. Prothero and R. J. Emry, “Summary,” in The Terrestrial Eocene-Oligocene Transition in North America, Ed. by D. R. Prothero and R. J. Emry (Cambridge Univ. Press, New York, 1996), pp. 664–683.

    Google Scholar 

  380. T. Qi, “The Middle Eocene Arshanto Fauna (Mammalia) of Inner Mongolia,” Ann. Carnegie Mus. 56(1), 1–73 (1987).

    Google Scholar 

  381. Z. Qiu and C. Li, “Miscellaneous Mammalian Fossils from the Paleocene of the Qianshan Basin, Anhui,” Vertebr. Palasiat. 15(2), 94–102 (1977).

    Google Scholar 

  382. Zh. X. Qiu and Z. G. Gu, “A New Locality Yielding Mid-Tertiary Mammals near Lanzhou, Gansu,” Vertebr. Palasiat. 26(3), 198–213 (1988).

    Google Scholar 

  383. G. E. Quinet and X. Misonne, “Les insectivores zalambdodontes de l’Oligocène inférieur belge,” Bull. Inst. R. Sci. Natur. Belg. 41(19), 1–15 (1965).

    Google Scholar 

  384. L. B. Radinsky and S. Y. Ting, “The Skull of Ernanodon, an Unusual Fossil Mammal,” J. Mammal. 65(1), 155–158 (1984).

    Google Scholar 

  385. E. P. Radionova and I. E. Khokhlova, “Was the North Atlantic Connected with the Tethys via the Arctic in the Early Eocene? Evidence from Siliceous Plankton,” GFF 122(1), 133–134 (2000).

    Google Scholar 

  386. Ch. A. Reed, “Some Fossorial Mammals from the Tertiary of Western North America,” J. Paleontol. 28(1), 102–111 (1954).

    Google Scholar 

  387. Ch. A. Repenning, “Subfamilies and Genera of the Soricidae,” Prof. Pap. US Geol. Surv., No. 565, 1–74 (1967).

  388. V. Yu. Reshetov, “A Review of Early Tertiary Tapiromorphs of Mongolia and the USSR,” Tr. Sovm. Sovet.-Mongol. Paleontol. Eksped., No. 2 (Fossil Fauna and Flora of Mongolia), 19–53 (1975).

  389. V. Yu. Reshetov, “On the First Find of the Genus Coryphodon Owen, 1845 (Mammalia, Pantodonta) in the Paleogene of the Mongolian People’s Republic,” Tr. Sovm. Sovet.-Mongol. Paleontol. Eksped., No. 3 (Paleontology and Biostratigraphy of Mongolia), 9–13 (1976).

  390. V. Yu. Reshetov, “Early Tertiary Tapiromorphs of Mongolia and the USSR,” Tr. Sovm. Sovet.-Mongol. Paleontol. Eksped., No. 11, 1–144 (1979).

  391. V. Yu. Reshetov, “A Brief Review of the Rhinocerotoidea (Perissodactyla) from the Paleogene of Asia,” in Paleotheriology (Nauka, Moscow, 1994), pp. 149–182 [in Russian].

    Google Scholar 

  392. V. Yu. Reshetov, N. S. Shevyreva, B. A. Trofimov, and V. M. Chkhikvadze, “On the Andarak-2 Locality of Vertebrates (Middle Eocene),” Byull. Mosk. O-va Ispyt. Prir., Otd. Geol. 53(3), 151–152 (1978).

    Google Scholar 

  393. V. Yu. Reshetov and B. A. Trofimov, “A Review of Studies of Extinct Mammals of the USSR,” in Theriology in the USSR (Nauka, Moscow, 1984), pp. 6–29 [in Russian].

    Google Scholar 

  394. J. W. F. Reumer, “Redefinition of the Soricidae and the Heterosoricidae (Insectivora, Mammalia), with the Description of the Crocidosoricinae, a New Subfamily of Soricidae,” Rev. Paleobiol. 6(2), 189–192 (1987).

    Google Scholar 

  395. J. W. F. Reumer, “A Classification of the Fossil and Recent Shrews,” in Evolution of Shrews, Ed. by J. M. Wójcik and M. Wolsan (Mammal Res. Inst., Bialowieza, 1998), pp. 5–22.

    Google Scholar 

  396. T. H. V. Rich, “Origin and History of the Erinaceinae and Brachyericinae (Mammalia, Insectivora) in North America,” Bull. Am. Mus. Natur. Hist. 171, 1–116 (1981).

    Google Scholar 

  397. T. H. V. Rich and D. L. Rasmussen, “New North American Erinaceine Hedgehogs (Mammalia: Insectivora),” Occas. Pap. Mus. Natur. Hist. Univ. Kansas, No. 21, 1–54 (1973).

  398. T. H. V. Rich and P. V. Rich, “Brachyerix, a Miocene Hedgehog from Western North America, with a Description of the Tympanic Region of Paraechinus and Podogymnura,” Am. Mus. Novit., No. 2477, 1–59 (1971).

  399. T. H. V. Rich, Y. P. Zhang, and S. J. Hand, “Insectivores and a Bat from the Early Oligocene Caijiachong Formation of Yunnan, China,” Austral. Mammal., No. 6, 61–75 (1983).

  400. A. Roberts, The Mammals of South Africa (Central News Agency, Cape Town, 1951).

    Google Scholar 

  401. P. Robinson, “Nyctitheriidae (Mammalia, Insectivora) from the Bridger Formation of Wyoming,” Contrib. Geol. Univ. Wyoming 7(2), 129–138 (1968).

    Google Scholar 

  402. P. Robinson and D. G. Kron, “Koniaryctes, a New Genus of Apternodontid Insectivore from Lower Eocene Rock of the Powder River Basin, Wyoming,” Contrib. Geol. Univ. Wyoming 32(2), 187–190 (1998).

    Google Scholar 

  403. A. L. Roca, G. K. Bar-Gal, E. Eizirik, et al., “Mesozoic Origin for West Indian Insectivores,” Nature 429(6992), 649–651 (2004).

    Article  Google Scholar 

  404. A. S. Romer, Vertebrate Paleontology (Univ. Chicago Press, Chicago, 1966).

    Google Scholar 

  405. K. D. Rose, “The Clarkforkian Land-Mammal Age and Mammalian Faunal Composition across the Paleocene-Eocene Boundary,” Pap. Paleontol. Univ. Michigan, No. 26, 1–196 (1981).

  406. K. D. Rose and P. D. Gingerich, “A New Insectivore from the Clarkforkian (Earliest Eocene) of Wyoming,” J. Mammal. 68(1), 17–27 (1987).

    Google Scholar 

  407. G. W. Rougier, J. R. Wible, and M. J. Novacek, “Implications of Deltatheridium Specimens for Early Marsupial History,” Nature 396(6710), 459–463 (1998).

    Article  Google Scholar 

  408. G. H. Roux, “The Cranial Development of Certain Ethiopian “Insectivores” and Its Bearing on the Mutual Affinities of the Group,” Acta Zool. Stockholm 28, 165–397 (1947).

    Article  Google Scholar 

  409. D. A. Russell, “A Review of the Oligocene Insectivore Micropternodus borealis,” J. Paleontol. 34(5), 940–949 (1960).

    Google Scholar 

  410. D. E. Russell, “Les mammifères paléocènes d’Europe,” Mém. Mus. Nat. Hist. Natur. Paris, Nov. Ser. 13, 1–324 (1964).

    Google Scholar 

  411. D. E. Russell and D. Dashzeveg, “Early Eocene Insectivores (Mammalia) from the People’s Republic of Mongolia,” Palaeontology 29(2), 269–291 (1986).

    Google Scholar 

  412. D. E. Russell and P. D. Gingerich, “Lipotyphla, Proteutheria (?), and Chiroptera (Mammalia) from the Early-Middle Eocene Kuldana Formation of Kohat (Pakistan),” Contrib. Mus. Paleontol. Univ. Michigan 25, 277–287 (1981).

    Google Scholar 

  413. D. E. Russell and M. Godinot, “The Paroxyclaenidae (Mammalia) and a New Form from the Early Eocene of Palette, France,” Paläontol. Z. 62(3–4), 319–331 (1988).

    Google Scholar 

  414. D. E. Russell and R.-J. Zhai, “The Paleogene of Asia: Mammals and Stratigraphy,” Mém. Mus. Nat. Hist. Natur. Paris, Ser. C 52, 1–488 (1987).

    Google Scholar 

  415. B. Rzebik-Kowalska, “Insectivora (Mammalia) from the Miocene of Belchatów in Poland: I. Metacodontidae: Plesiosorex Pomel, 1854,” Acta Zool. Cracov. 36(2), 267–274 (1993).

    Google Scholar 

  416. B. Rzebik-Kowalska, “The Importance of Shrews in the Stratigraphy of Cenozoic in Europe,” Mém. Trav. EPHE, Inst. Montpellier, No. 21, 249–259 (1997).

  417. B. Rzebik-Kowalska, “Fossil History of Shrews in Europe,” in Evolution of Shrews, Ed. by J. M. Wójcik and M. Wolsan (Mammal Res. Inst., Bialowieza, 1998), pp. 23–92.

    Google Scholar 

  418. R. Saban, “Phylogénie des Insectivores,” Bull. Mus. Nat. Hist. Natur., Sér. 2 26, 419–432 (1954).

    Google Scholar 

  419. R. Saban, “Insectivora,” in Traité de Paléontologie, (Masson and Co, Paris, 1958), Vol. 6, No. 2, pp. 822–909.

    Google Scholar 

  420. J. Salton, “Postcranial Morphology of the West Indian Eulipotyphla, Solenodon and Nesophontes (Mammalia),” J. Vertebr. Paleontol. 25(3 Suppl.), 108A (2005).

    Google Scholar 

  421. M. R. Sánchez-Villagra and K. K. Smith, “Diversity and Evolution of the Marsupial Mandibular Angular Process,” J. Mammal. Evol. 4(2), 119–144 (1997).

    Article  Google Scholar 

  422. D. E. Savage and D. E. Russell, Mammalian Paleofaunas of the World (Addison-Wesley Co, London, 1983).

    Google Scholar 

  423. M. Scally, O. Madsen, and C. J. Douady, “Molecular Evidence for the Major Clades of Placental Mammals,” J. Mammal. Evol. 8(4), 239–277 (2002).

    Article  Google Scholar 

  424. E. M. Schlaikjer, “Contributions to the Stratigraphy and Paleontology of the Goshen Hole Area, Wyoming: 1. A Detailed Study of the Structure and Relationships of a New Zalambdodont Insectivore from the Middle Oligocene,” Bull. Mus. Comp. Zool. Harvard 76(1), 1–28 (1933).

    Google Scholar 

  425. E. M. Schlaikjer, “A New Fossil Zalambdodont Insectivore,” Am. Mus. Novit., No. 698, 1–8 (1934).

  426. M. Schlosser, “Die Affen, Lemuren, Chiropteren, Insektivoren, Marsupialier, Creodontier und Carnivoren des Europäischen Tertiärs und deren Beziehungen zu ihren lebenden und fossilen außereuropäischen Verwandten: Part 1,” Beitr. Paläontol. Geol. Österr.-Ung. 6, 1–224 (1887).

    Google Scholar 

  427. J. H. Schwartz and L. Krishtalka, “The Lower Antemolar Teeth of Litolestes ignotus, a Late Paleocene Erinaceid (Mammalia, Insectivora),” Ann. Carnegie Mus. 46(1), 1–6 (1976).

    Google Scholar 

  428. C. S. Scott, “Late Torrejonian (Middle Paleocene) Mammals from South Central Alberta, Canada,” J. Paleontol. 77(4), 745–768 (2003).

    Google Scholar 

  429. C. S. Scott, R. C. Fox, and G. P. Youzwyshyn, “New Earliest Tiffanian (Late Paleocene) Mammals from Cochrane 2, Southwestern Alberta, Canada,” Acta Palaeontol. Polon. 47(4), 691–704 (2002).

    Google Scholar 

  430. W. B. Scott and G. L. Jepsen, “The Mammalian Fauna of the White River Oligocene: 1. Insectivora and Carnivora,” Trans. Am. Phil. Soc., Nov. Ser. 28(1), 1–153 (1936).

    Article  Google Scholar 

  431. E. R. Seiffert and E. L. Simons, “Widanelfarasia, a Diminutive Placental from the Late Eocene of Egypt,” Proc. Nat. Acad. Sci. USA 97(6), 2646–2651 (2000).

    Article  Google Scholar 

  432. T. Setoguchi, “Paleontology and Geology of the Badwater Creek Area, Central Wyoming: Part 16. The Cedar Ridge Local Fauna (Late Oligocene),” Bull. Carnegie Mus. Natur. Hist., No. 9, 1–61 (1978).

  433. N. S. Shevyreva, “New Rodents of Mongolia and Kazakhstan,” Paleontol. Zh., No. 3, 134–145 (1972).

  434. N. S. Shevyreva, “Paleogene Rodents of Asia: Families Paramyidae, Sciuravidae, Ischyromyidae, and Cylindrodontidae,” Tr. Paleontol. Inst. Akad. Nauk SSSR 158, 1–96 (1976).

    Google Scholar 

  435. N. S. Shevyreva, “New Rodents (Ctenodactyloidea, Rodentia, Mammalia) from teh Lower Eocene of Mongolia,” Paleontol. Zh., No. 3, 60–72 (1989).

  436. N. S. Shevyreva, “The First Find of an Eurymylid (Mixodontia, Mammalia) in Kyrgyzstan,” Dokl. Akad. Nauk 338(4), 571–573 (1994).

    Google Scholar 

  437. N. S. Shevyreva, “The Earliest Lagomorphs (Mammalia) of the Eastern Hemisphere,” Dokl. Akad. Nauk 345(3), 377–379 (1995).

    Google Scholar 

  438. A. Shinohara, K. L. Campbell, and H. Suzuki, “Molecular Phylogenetic Relationships of Moles, Shrew Moles, and Desmans from the New and Old Worlds,” Mol. Phylogenet. Evol. 27(2), 247–258 (2003).

    Article  Google Scholar 

  439. J. Shoshani and M. C. McKenna, “Higher Taxonomic Relationships among Extant Mammals Based on Morphology, with Selected Comparisons of Results from Molecular Data,” Mol. Phylogenet. Evol. 9(3), 572–584 (1998).

    Article  Google Scholar 

  440. V. F. Shuvalov, V. J. Reshetov, and R. Barsbold, “On New Stratotypical Section of Early Paleogene Continental Deposits in South-West of Mongolia,” Tr. Sovm. Sovet.-Mongol. Paleontol. Eksped., No. 1 (Fauna and Biostratigraphy of the Mesozoic and Cenozoic of Mongolia), 320–325 (1974).

  441. B. Sigé, “Insectivores primitifs de l’Éocène supérieur et Oligocène inférieur d’Europe occidentale. Nyctithériidés,” Mém. Mus. Nat. Hist. Natur., Sér. C 34 1–140 (1976).

    Google Scholar 

  442. B. Sigé, “Les mammifères insectivores des nouvelles collectiones de Sossis et sites associés (Éocène supérieur, Espagne),” Geobios 30(1), 91–113 (1997).

    Article  Google Scholar 

  443. B. Sigé, J.-Y. Crochet, and A. Insole, “Les plus vielles taupes,” Geobios, No. 1 Mem. Spec., 141–157 (1977).

  444. E. Simons and T. Bown, “Ptolemaiida, a New Order of Mammalia—with Description of the Cranium of Ptolemaia grangeri”, Proc. Nat. Acad. Sci. USA 92(8), 3269–3273 (1995).

    Article  Google Scholar 

  445. G. G. Simpson, “A New Mammalian Fauna from the Fort Union of Southern Montana,” Am. Mus. Novit., No. 297, 1–15 (1928).

    Google Scholar 

  446. G. G. Simpson, “A New Classification of Mammals,” Bull. Am. Mus. Natur. Hist. 59(6), 259–293 (1931).

    Google Scholar 

  447. G. G. Simpson, “Fort Union of Crazy Mountain Field, Montana, and Its Mammalian Faunas,” Bull. US Nat. Mus. 169, 1–287 (1937).

    Google Scholar 

  448. G. G. Simpson, “The Principles of Classification and Classification of Mammals,” Bull. Am. Mus. Natur. Hist. 85, 1–350 (1945).

    Google Scholar 

  449. R. E. Sloan, “Cretaceous and Paleocene Terrestrial Communities of Western North America,” Proc. N. Am. Paleontol. Conv., Part E (Evolution of Communities), pp. 427–453 (1969).

  450. R.E. Sloan and L. Van Valen, “Cretaceous Mammals from Montana,” Science 148(3367), 220–227 (1965).

    Google Scholar 

  451. N. Smidt-Kittler, “Dimyloides—Neufunde aus der oberoligozänen Spaltenfüllung ‘Ehrenstein 4’ (Süddeutschland) und die systematische Stellung der Dimyliden (Insectivora, Mammalia),” Mitt. Bayer. Staatssamml. Paläontol. Hist. Geol. 13, 115–139 (1973).

    Google Scholar 

  452. F. A. Smith, J.H. Brown, J. P. Haskell, et al., “Similarity of Mammalian Body Size across the Taxonomic Hierarchy and across Space and Time,” Am. Naturalist 163(5), 672–691 (2004).

    Article  Google Scholar 

  453. R. Smith, “Palaeosinopa russelli (Mammalia, Pantolesta), une espèce nouvelle du Membre de Dormaal, proche de le limite Paléocène-Eocène,” Bull. Inst. R. Sci. Natur. Belg. Sci. Terre 67, 153–159 (1997).

    Google Scholar 

  454. R. Smith, “Les pantolestidés (Mammalia, Pantolesta) de l’Eocène inférieur de Prémontré (Asine, France),” Palaeovertebrata 30(1–2), 11–35 (2001).

    Google Scholar 

  455. R. Smith, “Insectivores (Mammalia) from the Earliest Oligocene (MP 21) of Belgium,” Neth. J. Geosci. 83(3), 187–192 (2004).

    Google Scholar 

  456. T. Smith, “Presencé du genre Wyonycteris (Mammalia, Lipotyphla) à la limite Paléocène-Éocène en Europe,” CR Acad. Sci. Paris 321, 923–930 (1995).

    Google Scholar 

  457. T. Smith, “Les insectivores s.s. (Mammalia, Lipotyphla) de la transition Paléocène-Éocène de Dormaal (MP 7, Belgique): implication biochronologiques et paléogéographiques,” Mém. Trav. EPHE. Inst. Montpellier, No. 21, 687–696 (1997).

  458. M. S. Springer, W. J. Murphy, E. Eizirik, and S. J. O’Brien, “Placental Mammal Diversification and the Cretaceous-Tertiary Boundary,” Proc. Nat. Acad. Sci. USA 100, 1056–1061 (2003).

    Article  Google Scholar 

  459. M. S. Springer, M. J. Stanhope, O. Madsen, W. W. de Jong, “Molecules Consolidate the Placental Mammal Tree,” Trends Ecol. Evol. 19, 430–438 (2004).

    Article  Google Scholar 

  460. M. J. Stanhope, V. G. Waddell, O. Madsen, et al., “Molecular Evidence for Multiple Origins of Insectivora and for a New Order of Endemic African Insectivore Mammals,” Proc. Nat. Acad. Sci. USA 95(17), 9967–9972 (1998).

    Article  Google Scholar 

  461. R. A. Stirton and J. M. Rensberger, “Occurrence of the Insectivore Genus Micropternodus in the John Day Formation of Central Oregon,” Bull. South. Calif. Acad. Sci. 63(2), 57–80 (1964).

    Google Scholar 

  462. G. Storch, “The Eocene Mammalian Fauna from Messel—A Paleobiogeographical Jigsaw Puzzle,” in Vertebrates in the Tropics, Ed. by G. Peters and R. Hutterer (Mus. Alexander Koenig, Bonn, 1990), pp. 23–32.

    Google Scholar 

  463. G. Storch and D. Dashzeveg, “Zaraalestes russelli, a New Tupaiodontine Erinaceid (Mammalia, Lipotyphla) from the Middle Eocene of Mongolia,” Geobios 30(3), 437–445 (1997).

    Article  Google Scholar 

  464. G. Storch, Zh. Qiu, and V. S. Zazhigin, “Fossil History of Shrews in Asia,” in Evolution of Shrews, Ed. by J. M. Wójcik and M. Wolsan (Mammal Res. Inst., Bialowieza, 1998), pp. 93–120.

    Google Scholar 

  465. J. E. Storer, “Mammals of the Swift Current Creek Local Fauna (Eocene: Uintan, Saskatchewan),” Contrib. Saskatchewan Mus. Natur. Hist., No. 7, 1–158 (1984).

  466. J. E. Storer, “The Mammals of the Gryde Local Fauna, Frenchman Formation (Maasstrichtian: Lancian), Saskatchewan,” J. Vertebr. Paleontol. 11(3), 350–369 (1991).

    Article  Google Scholar 

  467. J. E. Storer, “Small Mammals of the Lac Pelletier Lower Fauna, Duchesnean of Saskatchewan, Canada: Insectivores and Insectivore-like Groups, a Plagiomenid, a Microsyopid and Chiroptera,” in Vertebrate Fossils and the Evolution of Scientific Concepts, Ed. by W. A. S. Sarjeant (Gordon and Breach, Saskatoon, 1995), pp. 595–615.

    Google Scholar 

  468. I. D. Strel’nikov, Anatomical Physiological Foundations of the Speciation in Vertebrates (Nauka, Leningrad, 1970) [in Russian].

    Google Scholar 

  469. R. K. Stucky, “Mammalian Faunas in North America of Bridgerian to Early Arikareean “Ages” (Eocene and Oligocene),” in Eocene-Oligocene Climatic and Biotic Evolution (Princeton Univ. Press, Princeton, 1992), pp. 464–493.

    Google Scholar 

  470. A. Sulimski, “On Some Oligocene Insectivore Remains from Mongolia,” Palaeontol. Polon., No. 21, 53–70 (1970).

  471. M. R. E. Symonds, “Phylogeny and Life Histories of the ‘Insectivora’: Controversies and Consequences,” Biol. Rev. 80(1), 93–128 (2005).

    Article  Google Scholar 

  472. F. S. Szalay, “Mixodectidae, Microsyopidae, and the Insectivore-Primate Transition,” Bull. Am. Mus. Natur. Hist. 140(4), 193–330 (1969).

    Google Scholar 

  473. F. S. Szalay, “Phylogenetic Relationships and a Classification of the Eutherian Mammalia,” in Major Patterns of Vertebrate Evolution (Plenum, New York, 1977), pp. 315–374.

    Google Scholar 

  474. F. S. Szalay and R. L. Decker, “Origins, Evolution, and Function of the Tarsus in the Late Cretaceous Eutheria and Paleocene Primates,” in Primate Locomotion, Ed. by F. A. Jenkins (Academic, New York, 1974), pp. 223–259.

    Google Scholar 

  475. F. S. Szalay and M. C. McKenna, “Beginning of the Age of Mammals in Asia: The Late Paleocene Gashato Fauna, Mongolia,” Bull. Am. Mus. Natur. Hist. 144(4), 269–318 (1971).

    Google Scholar 

  476. Y. Tang and D. Yan, “Notes on Some Mammalian Fossils from the Paleocene of Qianshan and Xuancheng, Anhui,” Vertebr. Palasiat. 14(2), 91–99 (1976).

    Google Scholar 

  477. E. Thenius, “Zur Revision der Insektivoren des steirischen Tertiars,” Sitzungsber. Öster. Akad. Wiss. Math.-Naturw. Kl., Abt. 1. 158(9–10), 671–693 (1949).

    Google Scholar 

  478. E. Thenius, “Stammesgeschichte der Säugetiere (einschliesslichder Hominiden),” in Kükenthal’s Handbuch der Zoologie (Walter der Gruyter, Berlin, 1969), Vol. 8, No. 47, pp. 1–368.

    Google Scholar 

  479. J. G. M. Thewissen and P. D. Gingerich, “Skull and Endocranial Cast of Eoryctes melanus, a New Palaeoryctid (Mammalia: Insectivora) from the Early Eocene of Western North America,” J. Vertebr. Paleontol. 994), 459–470 (1989).

    Article  Google Scholar 

  480. S. Ting, “Paleocene and Early Eocene Land Mammal Ages of Asia,” Bull. Carnegie Mus. Natur. Hist., No. 34, 124–147 (1998).

  481. S. Ting and C. Li, “The Skull of Hapalodectes (?Acreodi, Mammalia), with Notes on Some Chinese Paleocene Mesonychids,” Vertebr. Palasiat. 25(3), 161–186 (1987).

    Google Scholar 

  482. S. Ting, Y. Wang, J. A. Schiebout, et al., “New Early Eocene Mammalian Fossils from the Hengyang Basin, Hunan, China,” Bull. Carnegie Mus. Natur. Hist., No. 36, 291–302 (2004).

  483. Y. S. Tong, “Middle Eocene Small Mammals from Liguanqiao Basin of Henan Province and Yuanqu Basin of Shanxi Province, Central China,” Palaeontol. Sin., Nov. Ser. C, No. 26, 1–256 (1997).

  484. Y. Tong and M. Dawson, “Early Eocene Rodents (Mammalia) from Shandong Province, People’s Republic of China,” Ann. Carnegie Mus. 64, 51–63 (1995).

    Google Scholar 

  485. Y. Tong and J. Wang, “A New Soricomorph (Mammalia, Insectivora) from the Early Eocene of Wutu Basin, Shandong, China,” Vertebr. Palasiat. 31(1), 19–32 (1993).

    Google Scholar 

  486. Y. Tong and J. Wang, “A Preliminary Report on the Early Eocene Mammals of the Wutu Fauna, Shandong Province, China,” Bull. Carnegie Mus. Natur. Hist., No. 34, 186–193 (1998).

  487. Y. Tong, S. Zheng, and Z. Qiu, “Cenozoic Mammal Ages of China,” Vertebr. Palasiat. 33(4), 290–314 (1995).

    Google Scholar 

  488. B. A. Trofimov, “Insectivores of the Genus Palaeoscaptor from the Oligocene of Asia,” Tr. Paleontol. Inst. Akad. Nauk SSSR 77(4), 35–40 (1960).

    Google Scholar 

  489. S. Tucker and M. Voorhies, “A Diverse Late Miocene (Hemphillian) Insectivore Fauna from North-Central Nebraska,” J. Vertebr. Paleontol. 25(3 Suppl.), 124A–125A (2005).

    Google Scholar 

  490. L. Van Valen, “Paroxyclaenidae, an Extinct Family of Eurasian Mammals,” J. Mammal. 46(3), 388–397 (1965a).

    Google Scholar 

  491. L. Van Valen, “Some European Proviverrini (Mammalia, Deltatheridia),” Palaeontology 8(4), 636–665 (1965b).

    Google Scholar 

  492. L. Van Valen, “Deltatheridia, a New Order of Mammals,” Bull. Am. Mus. Natur. Hist. 132(1), 1–126 (1966).

    Google Scholar 

  493. L. Van Valen, “New Paleocene Insectivores and Insectivore Classification,” Bull. Am. Mus. Natur. Hist. 135(5), 217–284 (1967).

    Google Scholar 

  494. L. Van Valen, “The Beginning of the Age of Mammals,” Evol. Theory, No. 4, 45–80 (1978).

  495. G. Vandebroek, “The Comparative Anatomy of the Teeth of Lower and Non-specialized Mammals,” in International Colloquium on the Evolution of the Lower and Non-specialized Mammals (Konink. Vlaamse Acad. Wetensch., Brussels, 1961), pp. 215–320.

    Google Scholar 

  496. J. Viret, “Étude sur quelques Erinaceidés fossiles spécialement sur le genre Palaerinaceus,” Mém. Trav. Lab. Geol. Univ. Lyon 34(28), 1–32 (1938).

    Google Scholar 

  497. J. Viret, “Sur un nouvel exemplaire de Plesiosorex soricinoides Blainv. des argiles de Marseille-Saint-André,” Eclog. Geol. Helv. 39(2), 314–317 (1946).

    Google Scholar 

  498. J. Viret, “Nouvelles observations sur le genre Necrogymnurus Filhol (Erinacéidés),” Eclog. Geol. Helv. 40(2), 336–343 (1947).

    Google Scholar 

  499. I. A. Vislobokova, “Artiodactyls from the Middle Eocene of the Khaychin-Ula 2 Locality, Mongolia,” Paleontol. Zh., No. 1, 85–90 (2004a) [Paleontol. J. 38 (1), 90–96 (2004)].

  500. I. A. Vislobokova, “A New Representative of the Family Raoellidae (Suiformes) from the Middle Eocene of the Khaychin-Ula 2, Mongolia,” Paleontol. Zh., No. 2, 102–107 (2004b) [Paleontol. J. 38 (2), 220–226 (2004)].

  501. P. J. Waddell, N. Okada, and M. Hasegawa, “Towards Resolving the Interordinal Relationships of Placental Mammals,” Syst. Biol. 48(1), 1–5 (1999).

    Article  Google Scholar 

  502. P. J. Waddell and S. Shelley, “Evaluating Placental Inter-Ordinal Phylogenies with Novel Sequences Including RAG1, Gamma-fibrinogen, ND6, and Mt-tRNA, Plus MCMC-driven Nucleotide, Amino Acid, and Codon Models,” Mol. Phylogenet. Evol. 28(2), 197–224 (2003).

    Article  Google Scholar 

  503. J. A. Wagner, “Die Säugethiere,” in Abbildungen nach der Natur (Weiger, Leipzig, 1855), Suppl. Vol. 5, pp. 1–810.

    Google Scholar 

  504. B. Wang, “Late Paleocene Mesonychids from Nanxiong Basin, Guangdong,” Vertebr. Palasiat. 14(4), 252–258 (1976).

    Google Scholar 

  505. B. Wang and C. Li, “First Paleogene Mammalian Fauna from Northeast China,” Vertebr. Palasiat. 28(3), 165–205 (1990).

    Google Scholar 

  506. X. Wang, W. Downs, J. Xie, and G. Xie, “Didymoconus (Mammalia: Didymoconidae) from Lanzhou Basin, China and Its Stratigraphic and Ecological Significance,” J. Vertebr. Paleontol. 21(3), 555–564 (2001).

    Google Scholar 

  507. X. Wang and R. Zhai, “Carnilestes, a New Primitive Lipotyphlan (Insectivora: Mammalia) from the Early and Middle Paleocene, Nanxiong Basin, China,” J. Vertebr. Paleontol. 15(1), 131–145 (1995).

    Article  Google Scholar 

  508. Y. Wang, Y. Hu, M. Chow, and Ch. Li, “Chinese Paleocene Mammal Faunas and Their Correlation,” Bull. Carnegie Mus. Natur. Hist., No. 34, 89–123 (1998).

  509. R. M. West, “Upper Deciduous Dentition of the Oligocene Insectivore Leptictis (= Ictops) acutidens,” Ann. Carnegie Mus. 44(3), 25–32 (1972).

    Google Scholar 

  510. R. M. West and E. G. Atkins, “Additional Middle Eocene (Bridgerian) Mammals from Tabernacle Butte, Sublette County, Wyoming,” Am. Mus. Novit., No. 2404, 1–26 (1970).

  511. H. P. Whidden, “Comparative Myology of Moles and the Phylogeny of Talpidae (Mammalia, Lipotyphla),” Am. Mus. Novit. No 3294, 1–53 (2000).

  512. H. P. Whidden, “Extrinsic Snout Musculature in Afrotheria and Lipotyphla,” J. Mammal. Evol. 9(1–2), 161–184 (2002).

    Article  Google Scholar 

  513. H. P. Whidden and R. J. Asher, “The Origin of the Greater Antillean Insectivorans, in Biogeography of the West Indies, Patterns and Perspectives, Ed. by C. A. Woods and F. Sergile (CRC Press, Boca Raton, 2001), pp. 237–252.

    Google Scholar 

  514. Th. E. White, “Preliminar Analysis of the Fossil Vertebrates of the Camyon Ferry Reservoir Area,” Proc. US Nat. Mus. 103, 395–438 (1954).

    Google Scholar 

  515. R. W. Wilson, “The Dentition of the Paleocene “Insectivore” Genus Acmeodon Matthew et Granger (?Palaeoryctidae, Mammalia), J. Paleontol. 59(3), 713–720 (1985).

    Google Scholar 

  516. H. Winge, The Interrelationships of the Mammalian Genera (Reitzels Forlag, Copengagen, 1941).

    Google Scholar 

  517. M. Wolsan and R. Hutterer, “A List of the Living Species of Shrews,” in Evolution of Shrews, Ed. by J. M. Wójcik and M. Wolsan (Mammal Res. Inst., Bialowieza, 1998), pp. 425–448.

    Google Scholar 

  518. M. Wolsan and J. M. Wójcik, “Introduction,” in Evolution of Shrews, Ed. by J. M. Wójcik and M. Wolsan (Mammal Res. Inst., Bialowieza, 1998), pp. 1–4.

    Google Scholar 

  519. C. B. Wood and W. A. Clemens, “A New Specimen and a Functional Re-association of the Molar Dentition of Batodon tenuis (Placentalia, incertae sedis), Latest Cretaceous (Lancian), North America,” Bull. Mus. Compar. Zool. 156(1), 99–118 (2001).

    Google Scholar 

  520. C. B. Wood, M. C. McKenna, and D. Bosko, “An Old Specimen of a New Undescribed Late Paleocene Apternodus-like Insectivore,” J. Vertebr. Paleontol. 20(3 Suppl.), 80A (2000).

    Google Scholar 

  521. A. R. Wyss and J. Meng, “Application of Phylogenetic Taxonomy to Poorly Resolved Crown Clades: A Stemmodified Node-based Definition of Rodentia,” System. Biol. 45(4), 557–566 (1996).

    Google Scholar 

  522. N. M. Yanovskaya, “A Primitive Form of a Brontothere from the Eocene of Mongolia,” Tr. Sovm. Sovet.-Mongol. Paleontol. Eksped., No. 2 (Fossil Fauna and Flora of Mongolia) 14–18 (1975).

  523. N. M. Yanovskaya, “Brontotheres of Mongolia,” Tr. Sovm. Sovet.-Mongol. Paleontol. Eksped., No. 12, 1–219 (1980).

  524. J. C. Zachos, K. C. Lohmann, C. G. Walker, and S. W. Wise, “Abrupt Climate Change and Transient Climates in the Paleogene: A Marine Perspective,” J. Geol. 101(2), 191–213 (1993).

    Article  Google Scholar 

  525. J. Zachos, M. Pagani, L. Sloan, et al., “Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present,” Science 292(5517), 686–693 (2001).

    Article  Google Scholar 

  526. M. V. Zaitsev, “Ecological and Morphological Features of Functioning of the Masticatory Apparatus of Shrews,” in Evolutionary Factors of the Formation of Animal Life Diversity (KMK, Moscow, 2005), pp. 135–145 [in Russian].

    Google Scholar 

  527. O. Zdansky, “Die alttertiären Säugetiere Chinas nebst stratigraphischen Bemerkungen,” Palaeontol. Sin., Ser. C 6(2), 1–87 (1930).

    Google Scholar 

  528. R.-J. Zhai, “Mammalian Fossils of the Taoshuyuanzi Group, Eastern Turfan Basin,” Mem. Inst. Vertebr. Paleontol. Paleoanthropol. 13, 126–131 (1978).

    Google Scholar 

  529. J. Zheng, “A New Genus of Didymoconidae from the Paleocene of Jiangxi,” in The Mesozoic and Cenozoic Red Beds of South China (Science Press, Beijing, 1979), pp. 360–365.

    Google Scholar 

  530. J. Zheng and X. Huang, “A New Didymoconid (Mammalia) from the Early Eocene of Hunan,” Vertebr. Palasiat. 22(3), 198–207 (1984).

    Google Scholar 

  531. M. Zhou, T. Qi, and C. Li, “Paleocene Stratigraphy and Faunal Characters of Mammalian Fossils of Nomogen Commune, Si-Zi-Van-Qi, Nei Mongol,” Vertebr. Palasiat. 14(4), 228–233 (1976).

    Google Scholar 

  532. R. Ziegler, “Heterosoricidae und Soricidae (Insectivora, Mammalia) aus dem Oberoligozän und Untermiozän Süddeutschlands,” Stuttgart. Beitr. Naturk., Ser. B, No. 154, 1–73 (1989).

  533. R. Ziegler, “Didelphidae, Erinaceidae, Metacodontidae und Dimylidae (Mammalia) aus dem Oberoligozän und Untermiozän Süddeutschlands,” Stuttgart. Beitr. Naturk., Ser. B, No. 158, 1–99 (1990).

  534. R. Ziegler, “Marsupialia und Insectivora (Mammalia) aus den oberoligozänen Spaltenfüllungen Herrlingen 8 und Herrlingen 9 bei Ulm (Baden-Württemberg),” Senkenb. Lethaea 77(1/2), 101–143 (1998).

    Article  Google Scholar 

  535. R. Ziegler, “Erinaceidae and Dimylidae (Lipotyphla) from the Upper Middle Miocene of South Germany,” Senkenb. Lethaea 85(1), 131–152 (2005).

    Article  Google Scholar 

  536. R. Ziegler and E. P. J. Heizmann, “Oligozän Säugetierfaunen aus den Spaltenfüllungen von Lautern, Herrlingen und Ehrenstein bei Ulm (Baden-Württemberg),” Stuttgart. Beitr. Naturk., Ser. B, No. 171, 1–26 (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopatin, A.V. Early Paleogene insectivore mammals of Asia and establishment of the major groups of Insectivora. Paleontol. J. 40 (Suppl 3), S205–S405 (2006). https://doi.org/10.1134/S0031030106090012

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030106090012

Key words

Navigation