Skip to main content
Log in

Molecular Clocks and the Timing of the Placental and Marsupial Radiations in Relation to the Cretaceous–Tertiary Boundary

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Paleostratigraphic estimates of divergence time for nine independent cladogenic events within Mammalia, ranging from 14 to 130 million years, were regressed against Tamura–Nei-corrected 12S rRNA transversions. Relative rate-adjusted distances were also regressed against paleostratigraphic divergence times. The resulting equations were used to estimate interordinal divergence times within Eutheria and Metatheria for a data set that includes representatives of all orders in each infraclass. Without the adjustment for rate variation, divergence times range from 34 to 156 million years for placental orders, versus 32 to 86 million years for marsupial orders. With rate adjustments, the range of divergence estimates decreases to 53 to 133 million years for placentals versus 40 to 79 million years for marsupials. The effect of rate adjustments is most noticeable for carnivores and perissodactyls, where rates are slow, and proboscideans, where rates are fast. In agreement with studies based on nuclear genes, both unadjusted and rate-adjusted estimates of sequence divergence indicate that the majority of placental orders originated before the terminal Cretaceous extinction. Exceptions include the perissodactyl–carnivore split and cladogenesis among paenungulate orders. Most marsupial orders, in turn, may have originated in the early Tertiary although didelphimorphs, at least, appear to have split from other lineages in the late Cretaceous. Marsupial divergence times based on 12S rRNA data are in good agreement with estimates based on single-copy DNA hybridization and disagree with the suggestion of Hershkovitz (1992) that Dromiciops separated from other marsupials in the Jurassic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

LITERATURE CITED

  • Allard, M. W., and Miyamoto, M. M. (1992). Testing phylogenetic approaches with empirical data as illustrated with the parsimony method. Mol. Biol. Evol. 9: 778–786.

    Google Scholar 

  • Anderson, S., Bankie, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature 290: 457–465.

    Google Scholar 

  • Anderson, S., de Bruijn, M. H. L., Coulson, A. R., Eperon, I. C., Sanger, F., and Young, I. G. (1982). Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J. Mol. Biol. 156: 683–717.

    Google Scholar 

  • Archer, M., Hand, S., and Godthelp, H. (1991). Riversleigh, Reed Books, New South Wales, Australia.

    Google Scholar 

  • Archibald, J. D. (1996). Fossil evidence for a Late Cretaceous origin of “hoofed” mammals. Science 272: 1150–1153.

    Google Scholar 

  • Arnason, U., and Gullberg, A. (1993). Comparison between the complete mtDNA sequences of the blue and the fin whale, two species that can hybridize in nature. J. Mol. Evol. 37: 312–322.

    Google Scholar 

  • Arnason, U., and Johnsson, E. (1992). The complete mitochondrial DNA sequence of the harbor seal, Phoca vitulina. J. Mol. Evol. 34: 493–505.

    Google Scholar 

  • Arnason, U., Gullberg, A., and Widegren, B. (1991). The complete nucleotide sequence of the mitochondrial DNA of the fin whale, Balaenoptera physalus. J. Mol. Evol. 33: 556–568.

    Google Scholar 

  • Arnason, U., Gullberg, A., Johnsson, E., and Ledje, C. (1993). The nucleotide sequence of the mitochondrial DNA molecule of the grey seal, Halichoerus grypus, and a comparison with mitochondrial sequences of other true seals. J. Mol. Evol. 37: 323–330.

    Google Scholar 

  • Arnason, U., Gullberg, A., Janke, A., and Xu, X. (1996). Pattern and timing of evolutionary divergences among hominoids based on analyses of complete mtDNAs. J. Mol. Evol. 43: 650–661.

    Google Scholar 

  • Arnason, U., Gullberg, A., and Janke, A. (1997). Phylogenetic analyses of mitochondrial DNA suggest a sister group relationship between Xenarthra (Edentata) and Ferungulates. Mol. Biol. Evol. 14: 762–768.

    Google Scholar 

  • Cao, Y., Adachi, J., Yano, T., and Hasegawa, M. (1994). Phylogenetic place of guinea pigs: No support of the rodent-polyphyly hypothesis from maximum-likelihood analyses of multiple protein sequences. Mol. Biol. Evol. 11: 593–604.

    Google Scholar 

  • Carroll, R. L. (1988). Vertebrate Paleontology and Evolution, Freeman, New York.

    Google Scholar 

  • Chevret, P. (1994). Etude evolutive des Murinae (Rongeurs: Mammifères) africains par hybridation ADN/ADN. Comparaison avec les approches morphologiques et paleontologiques, Ph.D. thesis, Université Montpellier II, Montpellier, France.

  • Cooper, A., and Penny, D. (1997). Mass survival of birds across the Cretaceous-Tertiary boundary: Molecular evidence. Science 275: 1109–1113.

    Google Scholar 

  • D'Erchia, A. M., Gissi, C., Pesole, G., Saccone, C., and Arnason, U. (1996). The guinea-pig is not a rodent. Nature 381: 597–599.

    Google Scholar 

  • Douzery, E. (1993). Evolutionary relationships among Cetacea based on the sequence of the mitochondrial 12S rRNA gene: Possible paraphyly of toothed-whales (odontocetes) and long separate evolution of sperm whales (Physeteridae). C.R. Acad. Sci. Paris (Ser. II) 316: 1511–1518.

    Google Scholar 

  • Douzery, E., and Catzeflis, F. M. (1995). Molecular evolution of the mitochondrial 12S rRNA in Ungulata (Mammalia). J. Mol. Evol. 41: 622–636.

    Google Scholar 

  • Frye, M. S., and Hedges, S. B. (1995). Monophyly of the order Rodentia inferred from mitochondrial DNA sequences of the genes for 12S rRNA, 16S rRNA, and tRNA-valine. Mol. Biol. Evol. 12: 168–176.

    Google Scholar 

  • Gadaleta, G., Pepe, G., De Candia, G., Quagliariello, C., Sbisa, E., and Saccone, C. (1989). The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: Cryptic signals revealed by comparative analysis between vertebrates. J. Mol. Evol. 28: 497–516.

    Google Scholar 

  • Garland, T. J., Dickerman, A. W., Janis, C. M., and Jones, J. A. (1993). Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 42: 265–292.

    Google Scholar 

  • Gayet, M., Marshall, L. G., and Sempere, T. (1991). The Mesozoic and Paleocene vertebrates of Bolivia and their stratigraphic context: A review. Revista Tecnica YPFB 12: 393–433.

    Google Scholar 

  • Gingerich, P. D., Raza, S. M., Arif, M., and Zhou, X. Y. (1994). New whale from the Eocene of Pakistan and the origin of cetacean swimming. Nature 368: 844–847.

    Google Scholar 

  • Graur, D., Hide, W. A., and Li, W.-H. (1991). Is the guinea-pig a rodent? Nature 351: 649–652.

    Google Scholar 

  • Graur, D., Gouy, M., and Duret, L. (1997). Evolutionary affinities of the order Perissodactyla and the phylogenetic status of the superordinal taxa Ungulata and Altungulata. Mol. Phylogenet. Evol. 7: 195–200.

    Google Scholar 

  • Hanni, C., Laudet, V., Barriel, V., and Catzeflis, F. M. (1995). Evolutionary relationships of Acomys and other murids (Rodentia, Mammalia) based on complete 12S rRNA mitochondrial gene sequences. Israel J. Zool. 41: 131–146.

    Google Scholar 

  • Hartenberger, J.-L. (1994). The evolution of the Gliroidea. In: Rodent and Lagomorph Families of Asian Origins and Diversification, Y. Tomida, C. K. Li, and T. Setoguchi, eds., pp. 19–33, National Science Museum Monographs, Number 8, Tokyo.

    Google Scholar 

  • Hedges, S. B., Parker, P. H., Sibley, C. G., and Kumar, S. (1996). Continental breakup and the ordinal diversification of birds and mammals. Nature 381: 226–229.

    Google Scholar 

  • Hershkovitz, P. (1992). Ankle bones: The Chilean opossum Dromiciops gliroides Thomas, and marsupial phylogeny. Bonn. Zool. Beitr. 43: 181–213.

    Google Scholar 

  • Hillis, D. M., Mable, B. K., and Moritz, C. (1996). Applications of molecular systematics. In: Molecular Systematics, D. M. Hillis, C. Moritz, and B. K. Mable, eds., pp. 515–543, Sinauer, Sunderland, MA.

    Google Scholar 

  • Hixson, J. E., and Brown, W. M. (1986). A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: Sequence, structure, evolution, and phylogenetic implications. Mol. Biol. Evol. 3: 1–18.

    Google Scholar 

  • Hollar, L. J., and Springer, M. S. (1997). Old world fruitbat phylogeny: Evidence for convergent evolution and an endemic African clade. Proc. Natl. Acad. Sci. USA 94: 5716–5721.

    Google Scholar 

  • Hope, R., Cooper, S., and Wainwright, B. (1990). Globin macromolecular sequences in marsupials and monotremes. In: Mammals from Pouches and Eggs: Genetics, Breeding, and Evolution of Marsupials and Monotremes, J. A. Marshall Greves, R. M. Hope, and D. W. Cooper, eds., pp. 147–171, CSIRO, Melbourne, Australia.

    Google Scholar 

  • Janke, A., Xu, X., and Arnason, U. (1997). The complete mitochondrial genome of the wallaroo (Macropus robustus) and the phylogenetic relationship among Monotremata, Marsupialia, and Eutheria. Proc. Natl. Acad. Sci. USA 94: 1276–1281.

    Google Scholar 

  • Janke, A., Feldmaier-Fuchs, G., Thomas, W. K., von Haeseler, A., and Paabo, S. (1994). The marsupial mitochondrial genome and the evolution of placental mammals. Genetics 137: 243–256.

    Google Scholar 

  • Kirsch, J. A. W., Lapointe, F.-J., and Springer, M. S. (1997). DNA-hybridization studies of marsupials and their implications for metatherian classification. Aust. J. Zool. 45: 211–280.

    Google Scholar 

  • Kishino, H., and Hasegawa, M. (1989). Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J. Mol. Evol. 29: 170–179.

    Google Scholar 

  • Krajewski, C., Blacket, M., Buckley, L., and Westerman, M. (1997). A multigene assessment of phylogenetic relationships within the dasyurid marsupial subfamily Sminthopsinae. Mol. Phylogenet. Evol. 8: 236–248.

    Google Scholar 

  • Kraus, F., and Miyamoto, M. M. (1991). Rapid cladogenesis among the pecoran ruminants: evidence from mitochondrial DNA sequences. Syst. Zool. 40: 117–130.

    Google Scholar 

  • Krettek, A., Gullberg, A., and Arnason, U. (1995). Sequence analysis of the complete mitochondrial DNA molecule of the hedgehog, Erinaceus europaeus, and the phylogenetic position of the Lipotyphla. J. Mol. Evol. 41: 952–957.

    Google Scholar 

  • Lavergne, A., Douzery, E., Stichler, T., Catzeflis, F. M., and Springer, M. S. (1996). Interordinal mammalian relationships: evidence for paenungulate monophyly is provided by complete mitochondrial 12S rRNA sequences. Mol. Phylogenet. Evol. 6: 245–258.

    Google Scholar 

  • Li, W.-H., Hide, W. A., Zharkikh, A., Ma, D.-P., and Graur, D. (1992). The molecular taxonomy and evolution of the guinea pig. J. Hered. 83: 174–181.

    Google Scholar 

  • Lopez, J. V., Cevario, S., and O'Brien, S. J. (1996). Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome. Genomics 33: 229–246.

    Google Scholar 

  • Luckett, W. P., and Hartenberger, J.-L. (1993). Monophyly or polyphyly of the Order Rodentia: Possible conflict between morphological and molecular interpretations. J. Mammal. Evol. 1: 127–147.

    Google Scholar 

  • MacPhee, R. D. E., and Novacek, M. J. (1993). Definition and relationships of Lipotyphla. In: Mammal Phylogeny, 2. Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 13–31, Springer, New York.

    Google Scholar 

  • Madsen, O., Deen, P. M. T., Pesole, G., Saccone, C., and de Jong, W. W. (1997). Molecular evolution of mammalian aquaporin-2: Further evidence that elephant shrew and aardvark join the paenungulate clade. Mol. Biol. Evol. 14: 363–371.

    Google Scholar 

  • Marshall, C. R. (1990a). The fossil record and estimating divergence times between lineages: Maximum divergence times and the importance of reliable phylogenies. J. Mol. Evol. 30: 400–4081.

    Google Scholar 

  • Marshall, C. R. (1990b). Confidence intervals on stratigraphic ranges. Paleobiology 16: 1–10.

    Google Scholar 

  • Martin, A. P., and Palumbi, S. R. (1993). Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl. Acad. Sci. USA 90: 4087–4091.

    Google Scholar 

  • Miyamoto, M. M., and Goodman, M. (1986). Biomolecular systematics of eutherian mammals: Phylogenetic patterns and classification. Syst. Zool. 35: 230–240.

    Google Scholar 

  • Miyamoto, M. M., Kraus, F., and Ryder, O. A. (1990). Phylogeny and evolution of antlered deer determined from mitochondrial DNA sequences. Proc. Natl. Acad. Sci. USA 87: 6127–6131.

    Google Scholar 

  • Novacek, M. J. (1992). Mammalian phylogeny: Shaking the tree. Nature 356: 121–125.

    Google Scholar 

  • Novacek, M. J. (1993). Reflections on higher mammalian phylogenetics. J. Mammal. Evol. 1: 3–30.

    Google Scholar 

  • Porter, C. A., Goodman, M., and Stanhope, M. J. (1996). Evidence on mammalian phylogeny from sequences of exon 28 of the von Willebrand factor gene. Mol. Phylogenet. Evol. 5: 89–101.

    Google Scholar 

  • Rich, T. H., Vickers-Rich, P., Constantine, A., Flannery, T. F., Kool, L. and van Klaveren, N. (1997). A tribosphenic mammal from the Mesozoic of Australia. Science 278: 1438–1442.

    Google Scholar 

  • Richardson, B. J. (1988). A new view on the relationships of Australian and American marsupials. Austral. Mammal. 11: 71–73.

    Google Scholar 

  • Romer, A. S. (1966). Vertebrate Paleontology, University of Chicago Press, Chicago.

    Google Scholar 

  • Sourrouille, P., Hanni, C., Ruedi, M., and Catzeflis, F. (1995). Molecular systematics of Mus crociduroides, an endemic mouse of Sumatra (Muridae: Rodentia). Mammalia 59: 91–102.

    Google Scholar 

  • Springer, M. S. (1995). Molecular clocks and the incompleteness of the fossil record. J. Mol. Evol. 41: 531–538.

    Google Scholar 

  • Springer, M. S., and Douzery, E. (1996). Secondary structure, conservation of functional sites, and rates of evolution among mammalian mitochondrial 12S rRNA genes based on sequences from placentals, marsupials, and a monotreme. J. Mol. Evol. 43: 357–373.

    Google Scholar 

  • Springer, M. S., and Kirsch, J. A. W. (1991). DNA hybridization, the compression effect, and the radiation of diprotodontian marsupials. Syst. Zool. 40: 131–151.

    Google Scholar 

  • Springer, M., and Lilje, A. (1988). Gap analysis and biostratigraphy: the expected sequence of biostratigraphic events. J. Geol. 96: 228–236.

    Google Scholar 

  • Springer, M. S., Westerman, M., and Kirsch, J. A. W. (1994). Relationships among orders and families of marsupials based on 12S ribosomal DNA sequences and the timing of the marsupial radiation. J. Mammal. Evol. 2: 85–115.

    Google Scholar 

  • Springer, M. S., Hollar, L. J., and Burk, A. (1995). Compensatory substitutions and the evolution of the mitochondrial 12S rRNA gene in mammals. Mol. Biol. Evol. 12: 1138–1150.

    Google Scholar 

  • Springer, M. S., Burk, A., Kavanagh, J. R., Waddell, V. G., and Stanhope, M. J. (1997a). The interphotoreceptor retinoid binding protein gene in therian mammals: Implications for higher level relationships and evidence for loss of function in the marsupial mole. Proc. Natl. Acad. Sci. USA 94: 13754–13759.

    Google Scholar 

  • Springer, M. S., Cleven, G. C., Madsen, O., de Jong, W. W., Waddell, V. G., Amrine, H. M., and Stanhope, M. J. (1997b). Endemic African mammals shake the phylogenetic tree. Nature 388: 61–64.

    Google Scholar 

  • Springer, M. S., Kirsch, J. A. W., and Case, J. A. (1997c). The chronicle of marsupial evolution. In: Molecular Evolution and Adaptive Radiations, T. Givnish and K. Sytsma, eds., Cambridge University Press, Cambridge.

    Google Scholar 

  • Stanhope, M. J., Smith, M. R., Waddell, V. G., Porter, C. A., Shivji, M. S., and Goodman, M. (1996). Mammalian evolution and the interphotoreceptor retinoid binding protein (IRBP) gene: Convincing evidence for several superordinal clades. J. Mol. Evol. 43: 83–92.

    Google Scholar 

  • Strauss, D., and Sadler, P. M. (1989). Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Math. Geol. 21: 411–427.

    Google Scholar 

  • Sullivan, J., and Swofford, D. L. (1997). Are guinea pigs rodents? The importance of adequate models in molecular phylogenetics. J. Mammal. Evol. 4: 77–86.

    Google Scholar 

  • Swofford, D. L., Olsen, G. J., Waddell, P. J., and Hillis, D. M. (1996). Phylogenetic inference. In: Molecular Systematics, D. M. Hillis, C. Moritz, and B. K. Mable, eds., Sinauer, Sunderland, MA.

    Google Scholar 

  • Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512–526.

    Google Scholar 

  • Tanhauser, S. (1985). Evolution of Mitochondrial DNA: Patterns and Rate of Change, Ph.D. dissertation. University of Florida, Gainesville.

  • Thewissen, J. G. M., Hussain, S. T., and Arif, M. (1994). Fossil evidence for the origin of aquatic locomotion in archaeocete whales. Science 263: 210–212.

    Google Scholar 

  • Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    Google Scholar 

  • Wilson, A. C., Ochman, H., and Prager, E. M. (1987). Molecular time scale for evolution. Trends Genet. 3: 241–247.

    Google Scholar 

  • Xu, X., and Arnason, U. (1994). The complete mitochondrial DNA sequence of the horse, Equus caballus: Extensive heteroplasmy of the control region. Gene 148: 357–362.

    Google Scholar 

  • Zar, J. H. (1984). Biostatistical Analysis, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Springer, M.S. Molecular Clocks and the Timing of the Placental and Marsupial Radiations in Relation to the Cretaceous–Tertiary Boundary. Journal of Mammalian Evolution 4, 285–302 (1997). https://doi.org/10.1023/A:1027378615412

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027378615412

Navigation