Skip to main content
Log in

Ediacaran fossils in Meso- and Paleoproterozoic rocks in peninsular India extend Darwin

  • Published:
Journal of the Geological Society of India

Abstract

Typically or arguably Ediacaran fossils (635 Ma to 543 Ma) are reported by several research groups from one unit of the Chhattisgarh and two units of the Vindhyan Supergroups in peninsular India. Depositional ages of the host sediments, however, are inferred to be ∼1000 Ma and ∼ 1630 Ma as determined by U-Pb dating of magmatic and detrital zircons in rhyolitic tuff (∼ porcellanite) and sandstones, provenance considerations and paleopole positions. The contradiction of absolute ages results from inferring the Ediacaran age strictly on the basis of fossils. I argue that the fossils reported from the Chhattisgarh and Vindhyan Supergroups should be considered mostly Mesoproterozoic and late Proterozoic in age. I also argue that although the Ediacaran Period records explosive diversity of preserved fossils, many forms very likely appeared much earlier with variable degrees of preservation or none at all at times, and, that their age-ranges extend to the Paleoproterozoic. I hypothesize that the rate of increase of biological diversity was lower than the rate of preservation in certain geological intervals, especially immediately after extinction events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alene, M., Jenkin, G.R.T., Leng, M.J. and Darbyshire, D.P.F. (2006) The Tambien Group, Ethiopia: An early Cryogenian (ca. 800–735 Ma) Neoproterozoic sequence in the Arabian-Nubian Shield. Precambrian Res., v.147, pp. 79–99

    Article  Google Scholar 

  • Antcliffe, J.B. and Brasier, M.D. (2007) Charnia and sea pens are poles apart. Jour. Geol. Soc. London, v.164, pp.49–51.

    Article  Google Scholar 

  • Azmi, R. J., Joshi, D., Tiwari, B.N., Joshi, M.N., Mohan, K. and Srivastava, S.S. (2006) Age of the Vindhyan Supergroup of Central India: An exposition of biochronology vs. radiochronology. In: D. Sinha (Ed.), Micropaleontology: Application in Stratigraphy and Paleoceanography. Narosa, New Delhi, pp.29–62.

    Google Scholar 

  • Bagla, P. (2000) Team rejects claim of early Indian fossils. Science, v.289, p.1273.

    Article  Google Scholar 

  • Banerjee, S., Bhattacharya, S.K. and Sarkar, S. (2006) Carbon and oxygen compositions of the carbonate facies in the Vindhyan Supergroup, central India. Jour. Earth System Sci., v.115, pp.113–134.

    Article  Google Scholar 

  • Basu, A. (2008) Antiquity of Ediacaran fossils, early shelled organisms, recent radiometric age-dates from India and ancestral biota (abstract; CD-ROM)). LPSC Abstracts, v.39, #1740.

  • Bengtson, S., Belivanova, V., Rasmussen, B. and Whitehouse, M.J. (2007a) The Vindhyan enigma revisited. Geol. Soc. America Annual Meeting Abstracts, v.39, Paper 120-1.

  • Bengtson, S., Rasmussen, B. and Krapez, B. (2007b) The Paleoproterozoic megascopic Stirling biota. Paleobiology, v.33, pp.351–381.

    Article  Google Scholar 

  • Bhargava, O.N., Srikantia, S.V., Azmi, R.J., Bhatia, S.B., Ahluwalia, A.D., Bhatt, D.K. and Rai, V. (2000) Vindhyan fossil controversy. Jour. Geol. Soc. India, v.55, pp.675–680.

    Google Scholar 

  • Bhatt, D.K., Prasad, S., Jain, R.L., and Mathur, A.K. (2005) Some critical field observations on the genesis and stratigraphical status of Pokaran boulder bed, western Rajasthan. Jour. Geol. Soc. India, v.65, pp.301–308.

    Google Scholar 

  • Bhatt, D.K., Singh, G., Gupta, S., Soni, M.K., Moitra, A.K., Das, D.P. and De, C. (1999) Fossil report from Semri Group, lower Vindhyan. Jour. Geol. Soc. India, v.53, pp.717–723.

    Google Scholar 

  • Blair, J.E. and Hedges, S.B. (2005) Molecular clocks do not support the Cambrian Explosion. Molecular Biology and Evolution, v.22, pp.387–390.

    Article  Google Scholar 

  • Bleeker, W. (2004) Toward a “natural” Precambrian time scale. In: M. Gradstein, Felix, G. Ogg, James, and G. Smith, Alan (Eds.), A Geologic Time Scale 2004. Cambridge University Press, pp.141–146.

  • Bowring, S.A. and Erwin, D.H. (1998) A new look at evolutionary rates in deep time: uniting paleontology and high-precision geochronology. GSA Today, v.8, pp.1–8.

    Google Scholar 

  • Brasier, M., Green, O. and Shields, G. (1997) Ediacarian sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna. Geology, v.25, pp.303–306.

    Article  Google Scholar 

  • Brasier, M., McCarron, G., Tucker, R., Leather, J., Allen, P. and Shields, G. (2000) New U-Pb zircon dates for the Neoproterozoic Ghubrah glaciation and for the top of the Huqf Supergroup, Oman. Geology, v.28, pp.175–178.

    Google Scholar 

  • Breyer, J.A., Busbey, A.B., Hanson, R.E. and Roy, E. C. (1995) Possible new evidence for the origin of metazoans prior to 1 Ga: Sediment-filled tubes from the Mesoproterozoic Allamoore Formation, Trans-Pecos Texas. Geology, v.23, pp.269–272.

    Article  Google Scholar 

  • Budd, G. E. (2008) The earliest fossil record of the animals and its significance. Phil. Trans. Royal Soc. London. Biological Sciences, v.363, pp.1425–1434.

    Article  Google Scholar 

  • Burtis, E.W., Sears, J.W. and Chamberlain, K.R. (2007) Age and petrology of Neoproterozoic intrusions in the Northern Rocky Mountains, U. S. A.: correlation with the Gunbarrel magmatic event. In: K. Link, Paul and S. Lewis, Reed (Eds.), Proterozoic Geology of Western North America and Siberia. SEPM Spec. Publ., v.86, pp.175–191.

  • Campanha, G.A.C., Basei, M.S., Tassinari, C. C.G., Nutman, A.P. and Faleiros, F. M. (2008) Constraining the age of the Iporanga Formation with SHRIMP U-Pb zircon: Implications for possible Ediacaran glaciation in the Ribeira Belt, SE Brazil. Gondwana Res., v.13, pp.117–125.

    Article  Google Scholar 

  • Chakrabarti, A. (1990) Traces and dubiotraces: examples from the so-called Late Proterozoic siliciclastic rocks of the Vindhyan Supergroup around Maihar, India. Precambrian Res., v.47, pp.141–153.

    Article  Google Scholar 

  • Chakrabarti, R., Basu, A.R. and Chakrabarti, A. (2007) Trace element and Nd-isotopic evidence for sediment sources in the mid-Proterozoic Vindhyan Basin, central India. Precambrian Res., v.159, pp.260–274.

    Article  Google Scholar 

  • Chakraborty, C. (2006) Proterozoic intracontinental basin: the Vindhyan example. Jour. Earth System Science, v.115, pp.3–22.

    Article  Google Scholar 

  • Chaudhuri, A.K., Mukhopadhyay, J., Patranabis-Deb, S. and Chanda, S.K. (1999) The Neoproterozoic cratonic successions of Peninsular India. Gondwana Res., v.2, pp.213–225.

    Article  Google Scholar 

  • Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A. and Jin, Y. (2005) U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, v.308, pp.95–98.

    Article  Google Scholar 

  • Das, N., Dutta, D.R. and Das, D.P. (2001) Proterozoic cover sediments of southeastern Chhattisgarh State and adjoining parts of Orissa. Geol. Surv. India Spec. Publ., v.55, pp.237–262.

    Google Scholar 

  • De, C. (2006a) Ediacara fossil assemblage in the Upper Vindhyans of central India and its significance. Jour. Asian Earth Sci., v. 27, pp. 660–683.

    Article  Google Scholar 

  • De, C. (2006b) Vindhyan trace fossils, dubiofossils and pseudofossils in the light of advent and early evolution of metazoans. Indian Minerals, v.60, pp.1–38.

    Google Scholar 

  • De, C. (2003) Possible organisms similar to Ediacaran forms from the Bhander Group, Vindhyan Supergroup, late Neoproterozoic of India. Jour. Asian Earth Sci., v.21, pp.387–395.

    Article  Google Scholar 

  • De, C. (2007) Study of the Proterozoic life of the Chhattisgarh basin, Chhattisgarh in the light of early organic evolution, biostratigraphy and paleoenvironments. Rec. Geol. Surv. India, v.139, pp.23–24.

    Google Scholar 

  • Dong, L., Xiao, S., Shen, B. and Zhou, C. (2008) Silicified Horodyskia and Palaeopascichnus from upper Ediacaran cherts in South China: tentative phylogenetic interpretation and implications for evolutionary stasis. Jour. Geol. Soc., v.165, pp.367–378.

    Article  Google Scholar 

  • Dongre, A., Chalapathi Rao, N.V. and Kamde, G. (2008) Limestone xenolith in Siddanpalli Kimberlite, Gadwal Granite-Greenstone Terrain, Eastern Dharwar Craton, Southern India: Remnant of Proterozoic platformal cover sequence of Bhima/Kurnool age? Jour. Geol., v.116, pp.184–191.

    Article  Google Scholar 

  • Donoghue, P.C.J. and Benton, M.J. (2007) Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends in Ecology & Evolution, v.22, pp.424–431.

    Article  Google Scholar 

  • Dutta, S., Steiner, M., Banerjee, S., Erdtmann, B.-D., Jeevankumar, S. and Mann, U. (2006) Chuaria circularis from the early Mesoproterozoic Suket Shale, Vindhyan Supergroup, India: insights from light and electron microscopy and pyrolysis-gas chromatography. Jour. Earth System Science, v.115, pp.99–112.

    Article  Google Scholar 

  • Fedonkin, M.A., Gehling, J.G., Grey, K., Narbonne, G.M. and Vickers-Rich, P. (2007) The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. The Johns Hopkins University Press, Baltimore, 326 p.

    Google Scholar 

  • Grazhdankin, D. and Gerdes, G. (2007) Ediacaran microbial colonies. Lethaia, v.40, pp.201–210.

    Article  Google Scholar 

  • Gregory, L.C., Meert, J.G., Pradhan, V., Pandit, M.K., Tamrat, E. and Malone, S.J. (2006) A paleomagnetic and geochronologic study of the Majhgawan kimberlite, India: Implications for the age of the Upper Vindhyan Supergroup. Precambrian Res., v.149, pp.65–75.

    Article  Google Scholar 

  • Grotzinger, J.P., Bowring, S.A., Saylor, B. Z. and Kaufman, A.J. (1995) Biostratigraphic and geochronologic constraints on early animal evolution. Science, v.270, pp.598–604.

    Article  Google Scholar 

  • Hagadorn, J.W., Xiao, S., Donoghue, pp. C. J., Bengtson, S., Gostling, N.J., Pawlowska, M., Raff, E.C., Raff, R.A., Turner, F.R., Chongyu, Y., Zhou, C., Yuan, X., McFeely, M.B., Stampanoni, M., and Nealson, K.H. (2006) Cellular and subcellular structure of Neoproterozoic animal embryos. Science, v.314, pp.291–294.

    Article  Google Scholar 

  • Halverson, G.P., Dudas, F.O., Maloof, A.C. and Bowring, S.A. (2007) Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeo. Palaeoclimat. Palaeoecol., v.256, pp.103–129.

    Article  Google Scholar 

  • Halverson, G.P., Hoffman, P.F., Schrag, D.P., Maloof, A.C. and Rice, A.H.N. (2005) Toward a Neoproterozoic composite carbon-isotope record. Bull. Geol. Soc. Amer., v.117, pp.1181–1207.

    Article  Google Scholar 

  • Hill, A.C., Haines, P.W., Grey, K. and Willman, S. (2007) New records of Ediacaran Acraman ejecta in drillholes from the Stuart Shelf and Officer Basin, South Australia. Meteoritics and Planetary Science, v.42, pp.1859–2031.

    Article  Google Scholar 

  • Hoffman, P.F. and Schrag, D.P. (2000) Snowball Earth: Scientific American, v.282, pp.62–75.

    Google Scholar 

  • Hoffman, P.F. and Schrag, D.P. (2002) The snowball Earth hypothesis: testing the limits of global change: Terra Nova, v.14, pp.129–155.

    Article  Google Scholar 

  • Hofmann, H.J. (2005) Palaeoproterozoic dubiofossils from India revisited — Vindhyan triploblastic animal burrows or pseudofossils? Jour. Palaeont. Soc. India, v.50, pp.113–120.

    Google Scholar 

  • Hughes, N.C., Peng Shanchi, Bhargava, O. N., Ahluwalia, A.D., Walia, S., Myrow, P. M. and Parcha, S.K. (2005) Cambrian biostratigraphy of the Tal Group, Lesser Himalaya, India, and early Tsanglangpuan (late Early Cambrian) trilobites from the Nigali Dhar Syncline. Geological Mag., v.142, pp.57–80.

    Article  Google Scholar 

  • Javaux, E.J. and Marshal, C.P. (2006) A new approach in deciphering early protist paleobiology and evolution: Combined microscopy and microchemistry of single Proterozoic acritarchs. Rev. Palaeobotany and Palynology, v.139, pp.1–15.

    Article  Google Scholar 

  • Kathal, P.K., Patel, D.R. and Alexander, P.O. (2000) An Ediacaran fossil Spriggina (?) from the Semri Group and its implication on the age of the Proterozoic Vindhyan Basin, central India: Neues Jahrbuch fuer Geologie und Palaeontologie. Monatshefte, v.2000, pp.321–332.

    Google Scholar 

  • Kauffman, E.G. and Steidtmann, J.R. (1981) Are these the oldest metazoan trace fossils? Jour. Paleont., v.55, pp.923–947.

    Google Scholar 

  • Kaufman, A.J., Jiang, G., Christie-Blick, N., Banerjee, D.M. and Rai, V. (2006) Stable isotope record of the terminal Neoproterozoic Krol platform in the Lesser Himalayas of northern India: Precambrian Res., v.147, pp.156–185.

    Article  Google Scholar 

  • Kirschvink, J.L. (1992) Late Proterozoic low-latitude global glaciation: the snowball Earth. In: J.W. Schopf and C. Klein (Eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, pp.51–52.

  • Kirschvink, J.L., Gaidos, E.J., Bertani, L.E., Beukes, N.J., Gutzmer, J., Maepa, L.N. and Steinberger, R. E. (2000) Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proc.Natl. Acad. Sci., United States of America (PNAS), v.97, pp.1400–1405.

    Article  Google Scholar 

  • Knoll, A. H. (2000) Learning to tell Neoproterozoic time. Precambrian Res., v.100, pp.3–20.

    Article  Google Scholar 

  • Knoll, A.H., Walter, M.R., Narbonne, G.M. and Christie-Blick, N. (2006a) The Ediacaran Period: a new addition to the geologic time scale. Lethaia, v.39, pp.13–30.

    Article  Google Scholar 

  • Knoll, A.H., Javaux, E.J., Hewitt, D. and Cohen, P. (2006b) Eukaryotic organisms in Proterozoic oceans. Phil. Trans. Royal Soc. London, Biological Sciences, v.361, pp.1023–1038.

    Article  Google Scholar 

  • Knoll, A.H. and Carroll, S.B. (1999) Early animal evolution: emerging views from comparative biology and geology. Science, v.284, pp.2129–2137.

    Article  Google Scholar 

  • Knoll, A.H., Walter, M.R., Narbonne, G. M. and Christie-Blick, N. (2004) A New Period for the Geologic Time Scale. Science, v. 305, pp. 621–622.

    Article  Google Scholar 

  • Kulkarni, K.G., Borkar, V.D. and Bhattacharjee, S. (2004) Restudy of type specimens of trace fossils from Vindhyan Supergroup of Chambal Valley. Gondwana Geol. Mag., v.19, pp.71–75.

    Google Scholar 

  • Kumar, G., Shanker, R., Maithy, P.K., Mathur, V.K., Bhattacharya, S.K. and Jani, R. A. (1997) Terminal Proterozoic-Cambrian sequences in India: A review with special reference to Precambrian-Cambrian boundary. The Palaeobotanist, v.46, pp.19–31.

    Google Scholar 

  • Lamb, D.M., Awramik, S.M. and Zhu, S. (2007) Paleoproterozoic compression-like structures from the Changzhougou Formation, China: Eukaryotes or clasts? Precambrian Res., v.154, pp.236–247.

    Article  Google Scholar 

  • Lepland, A., van Zuilen, M. A., Arrhenius, G., Whitehouse, M.J. and Fedo, C.M. (2005) Questioning the evidence for Earth’s earliest life — Akilia revisited. Geology, v.33, pp.77–79.

    Article  Google Scholar 

  • Levinton, J., Dubb, L. and Wray, G.A. (2004) Simulations of evolutionary radiations and their application to understanding the probability of a Cambrian explosion. Jour. Paleont., v.78, pp.31–38.

    Article  Google Scholar 

  • Maithy, P.K. and Babu, R. (1997) Upper Vindhyan biota and Precambrian/Cambrian boundary. The Palaeobotanist, v.46, pp.1–6.

    Google Scholar 

  • Malone, S., Meert, J., Banerjee, D.M., Pandit, M., Tamrat, E., Kamenov, G.D., Pradhan, V. and Sohl, L.E. (2008) Paleomagnetism and detrital zircon geochronology of the Upper Vindhyan Sequence, Son Valley and Rajasthan, India. A ca. 1000 Ma Closure Age for the Purana Basins?: Precambrian Res., v.164, pp.137–159.

    Article  Google Scholar 

  • Mapstone, N.B. and McIlroy, D. (2006) Ediacaran fossil preservation: Taphonomy and diagenesis of a discoid biota from the Amadeus Basin, central Australia. Precambrian Res., v.149, pp.126–148.

    Article  Google Scholar 

  • Mathur, V.K. and Srivastava, D.K. (2004) Record of terminal Neoproterozoic Ediacaran fossils from Krol Group, Nigalidhar Syncline, Sirmaur District, Himachal Pradesh, India. Jour. Geol. Soc. India, v.64, pp.231–232.

    Google Scholar 

  • McCall, G.J.H. (2006) The Vendian (Ediacaran) in the geological record: Enigmas in geology’s prelude to the Cambrian explosion: Earth Sci. Rev., v.77, pp.1–229.

    Article  Google Scholar 

  • McElhinny, M.W., Taylor, S.R. and Stevenson, D.J. (1978) Limits to the expansion of Earth, Moon, Mars, and Mercury and to changes in the gravitational constant: Nature, v.271, pp.316–321.

    Article  Google Scholar 

  • McKay, D.S., Gibson, E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Meachling, C.R. and Zare, R. N. (1996) Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALH84001. Science, v.273, pp.924–930.

    Article  Google Scholar 

  • McMenamin, D. S., Kumar, S. and Awramik, S.M. (1983) Microbial fossils from the Kheinjua Formation, Middle Proterozoic Semri Group (Lower Vindhyan) Son Valley area, central India: Precambrian Res., v.21, pp.247–271.

    Article  Google Scholar 

  • Medlicott, H.B. and Blanford, W.T. (1879) A Manual of the Geology of India. Part I; Part II, Government of India. 817p.

  • Moitra, A.K. (2003a) Possibility of finding metazoans in Chhattisgarh Basin. Gondwana Geol. Mag., v.7, pp.395–400.

    Google Scholar 

  • Moitra, A.K. (2003b) Stromatolite biostratigraphy in the Chhattisgarh Basin and possible correlation with the Vindhyan Basin. Jour. Palaeont. Soc. India, v.48, pp.215–223.

    Google Scholar 

  • Moitra, A.K. and De, C. (1999) Study and evaluation of metazoans and microfossils in parts of Vindhyan Supergroup at Satna and Sidhi districts, M.P. Rec. Geol. Surv. India, v.131, pp.12–13.

    Google Scholar 

  • Mojzsis, S.J. and Harrison, T.M. (2000) Vestiges of a beginning: Clues to the emergent biosphere recorded in the oldest known sedimentary rocks: GSA Today, v. 10, pp. 2–7.

    Google Scholar 

  • Narbonne, G.M., Kaufman, A.J. and Knoll, A.H. (1994) Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: Implications for Neoproterozoic correlations and the early evolution of animals. Bull. Geol. Soc. Amer., v.106, pp.1281–1292.

    Article  Google Scholar 

  • Pandit, M.K., Sial, A.N., Jamrani, S.S. and Ferreira, V.P. (2001) Carbon isotopic profile across the Bilara Group rocks of Trans-Aravalli Marwar Supergroup in western India: Implications for Neoproterozoic-Cambrian transition. Gondwana Res., v.4, pp.387–394.

    Article  Google Scholar 

  • Patranabis-Deb, S., Bickford, M.E., Hill, B., Chaudhuri, A.K. and Basu, A. (2007) SHRIMP ages of zircon in the uppermost tuff in Chattisgarh Basin in central India require ∼500Ma adjustment in Indian Proterozoic stratigraphy: Journal of Geology, v. 115, pp. 407–415.

    Article  Google Scholar 

  • Patranabis-Deb, S. and Chaudhuri, A.K. (2002) Stratigraphic architecture of the Proterozoic succession in the eastern Chattisgarth Basin, India: tectonic implications. Sedimentary Geol., v.147, pp.105–125.

    Article  Google Scholar 

  • Patranabis-Deb, S., Schieber, J. and Basu, A. (2009) Almandine garnet phenocrysts in a ∼1 Ga rhyolitic tuff from central India. Geological Mag., v.146, pp. (in press).

  • Pelechaty, S.M., Kaufman, A.J. and Grotzinger, J.P. (1996) Evaluation of δ13C chemostratigraphy for intrabasinal correlation: Vendian strata of northeast Siberia. Bull. Geol. Soc. Amer., v.108, pp.992–1003.

    Article  Google Scholar 

  • Poornachandra Rao, G.V.S., Singh, S.B., and Lakshmi, K.J.P. (2007) Neoproterozoic palaeomagnetic results of Jodhpur Sandstone, Marwar Supergroup, western Rajasthan. Jour. Geol. Soc. India, v.69, pp.901–908.

    Google Scholar 

  • Prasad, B. (2007) Obruchevella and other terminal Proterozoic (Vindhyan) organic-walled microfossils from the Bhander Group (Vindhyan Supergroup), Madhya Pradesh. Jour. Geol. Soc. India, v.69, pp.295–310.

    Google Scholar 

  • Prave, A.R. (2002) Life on land in the Proterozoic: Evidence from the Torridonian rocks of northwest Scotland. Geology, v.30, pp.811–814.

    Article  Google Scholar 

  • Raghav, K.S., De, C. and Jain, R.L. (2005) The first record of Vendian medusoids and trace fossil-bearing algal matgrounds from the basal part of the Marwar Supergroup of Rajasthan, India. Indian Minerals, v.59, pp.23–30.

    Google Scholar 

  • Rai, V. and Singh, V.K. (2004) Discovery of Obruchevella Reitlinger, 1948 from the late Palaeoproterozoic lower Vindhyan succession and its significance: Jour. Palaeont. Soc. India, v.49, pp.189–196.

    Google Scholar 

  • Rasmussen, B., Bose, P.K., Sarkar, S., Banerjee, S., Fletcher, I.R. and McNaughton, N. J. (2002) 1.6 Ga U-Pb zircon age for the Chorhat Sandstone, lower Vindhyan, India: Possible implications for early evolution of animals. Geology, v.30, pp.103–106.

    Article  Google Scholar 

  • Rasmussen, B., Fletcher, I.R., Bengtson, S. and McNaughton, N.J. (2004) SHRIMP U-Pb dating of diagenetic xenotime in the Stirling Range Formation, Western Australia: 1.8 billion year minimum age for the Stirling biota. Precambrian Res., v.133, pp.329–337.

    Article  Google Scholar 

  • Rathore, S.S., Venkatesan, T.R. and Srivastava, R.K. (1999) Rb-Sr isotope dating of Neoproterozoic (Malani Group) magmatism from southwest Rajasthan, India: evidence of younger Pan-African thermal event by 40Ar-39Ar studies. Gondwana Res., v.2, pp.271–281.

    Article  Google Scholar 

  • Ray, J. S. (2006) Age of the Vindhyan Supergroup: a review of recent findings. Jour. Earth System Science, v.115, pp.149–160.

    Article  Google Scholar 

  • Ray, J.S., Martin, M.W., Veizer, J. and Bowring, S.A. (2002) U-Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India: Geology, v. 30, pp. 131–134.

    Article  Google Scholar 

  • Ray, J.S., Veizer, J. and Davis, W.J. (2003) C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: age, diagenesis, correlations and implications for global events. Precambrian Res., v.121, pp.103–140.

    Article  Google Scholar 

  • Sarangi, S., Gopalan, K. and Kumar, S. (2004) Pb-Pb age of earliest megascopic, eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: implications for Precambrian atmospheric oxygen evolution. Precambrian Res., v.132, pp.107–121.

    Article  Google Scholar 

  • Saylor, B.Z., Kaufman, A.J., Grotzinger, J.P. and Urban, F. (1998) A composite reference section for terminal Proterozoic strata of southern Namibia. Jour. Sedimentary Res., v.68, pp.1223–1235.

    Google Scholar 

  • Sergeev, V.N. (2006) The importance of Precambrian microfossils for modern biostratigraphy. Paleont. Jour., v.40, pp.S664–S673.

    Article  Google Scholar 

  • Shanker, R., Bhattacharya, D.D., Pande, A.C. and Mathur, V.K. (2004) Ediacaran biota from the Jarashi (middle Krol) and Mahi (lower Krol) Formations, Krol Group, Lesser Himalaya, India. Jour. Geol. Soc. India, v.63, pp.649–654.

    Google Scholar 

  • Sharma, M. (2006) Palaeobiology of Mesoproterozoic Salkhan Limestone, Semri Group, Rohtas, Bihar, India: systematics and significance. Jour. Earth System Sci., v.115, pp.67–98.

    Article  Google Scholar 

  • Shixing, Z. and Huineng, C. (1995) Megascopic multicellular organisms from the 1700-million-year-old Tuanshanzi Formation in the Jixian Area, North China. Science, v.270, pp.620–622.

    Article  Google Scholar 

  • Sokolov, B.S. and Iwanowski, A.B. (1990) The Vendian System. Vol 1: Paleontology. Springer-Verlag. 383p.

  • Sprigg, R.C. (1947) Early Cambrian (?) jellyfishes from the Flinders ranges, South Australia. Trans. Royal Soc. South Australia, v.71, pp.212–224.

    Google Scholar 

  • Sugitani, K., Grey, K., Allwood, A., Nagaoka, T., Mimura, K., Minami, M., Marshall, C.P., Van Kranendonk, M.J. and Walter, M.R. (2007) Diverse microstructures from Archaean chert from the Mount Goldsworthy-Mount Grant area, Pilbara Craton, Western Australia: Microfossils, dubiofossils, or pseudofossils? Precambrian Res., v.158, pp.228–262.

    Article  Google Scholar 

  • Tewari, V.C. (2001) Neoproterozoic glaciation in the Uttaranchal Lesser Himalaya and the global palaeoclimatic change. Geol. Surv. India Spec. Publ., v.65, pp.49–55.

    Google Scholar 

  • Tewari, V.C. and Sial, A.N. (2007) Neoproterozoic-Early Cambrian isotopic variation and chemostratigraphy of the Lesser Himalaya, India, eastern Gondwana: Chemical Geol., v.237, pp.64–88.

    Article  Google Scholar 

  • Torsvik, T.H., Ashwal, L.D., Tucker, R.D., and Eide, E.A. (2001) Neoproterozoic geochronology and palaeogeography of the Seychelles microcontinent; the India link. Precambrian Res., v.110, pp.47–59.

    Article  Google Scholar 

  • Waggoner, B. (1998) Interpreting the earliest metazoan fossils: What can we learn? American Zoologist, v.38, pp.975–982.

    Google Scholar 

  • Wray, G.A., Levinton, J.S. and Shapiro, L. H. (1996) Molecular evidence for deep Precambrian divergences among metazoan phyla. Science, v.274, pp.568–573.

    Article  Google Scholar 

  • Xiao, S., Knoll, A. H., Kaufman, A. J., Yin, L., and Zhang, Y. (1997) Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform. Precambrian Res., v.84, pp.197–220.

    Article  Google Scholar 

  • Xue, Y., Zhou, C. and Tang, T. (1999) “Animal embryos”, a misinterpretation of Neoproterozoic microfossils. Acta Micropalaeontologica Sinica = Weiti Gushengwu Xuebao, v.16, pp.1–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Basu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, A. Ediacaran fossils in Meso- and Paleoproterozoic rocks in peninsular India extend Darwin. J Geol Soc India 73, 528–536 (2009). https://doi.org/10.1007/s12594-009-0036-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-009-0036-6

Keywords

Navigation