Skip to main content
Log in

New Siliceous Microfossils from the Terreneuvian Yanjiahe Formation, South China: The Possible Earliest Radiolarian Fossil Record

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Radiolarians form an important part of the planktonic realm in the ocean of Early Paleozoic, but their origin and evolutionary processes has long been enigmatic. The ancestral representatives of radiolarians have been considered to belong to the order Archaeospicularia, whose unquestionable fossil records were dated back to the Middle Cambrian. Here we report ?Blastulospongia and unnamed spherical radiolarians in the Terreneuvian from the Yanjiahe Formation in Hubei Province, South China. Blastulospongia is an enigmatic siliceous microfossil genus, with affinities proposed amongst the radiolarian, sphinctozoan-grade sponges and uncertain protists. As for the newly discovered unnamed radiolarians, morphologically they possess latticed shell, spherical shape and are all small in size. Our discoveries support the idea that spherical radiolarians is an ancient representative, whose origin and diversification was probably much earlier than generally accepted. The hypothesis that the oldest radiolarians belong to the order Archaeospicularia needs to be re-examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Anderson, O. R., 1983. Radiolaria. Springer, New York. 271

    Book  Google Scholar 

  • Bengtson, S., 1986. Siliceous Microfossils from the Upper Cambrian of Queensland. Alcheringa: An Australasian Journal of Palaeontology, 10(3): 195–216. https://doi.org/10.1080/03115518608619155

    Article  Google Scholar 

  • Braun, A., Chen, J. Y., Waloszek, D., et al., 2007a. First Early Cambrian Radiolaria. In: Vickers–Rich, P., Komarower, P., eds., The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Publications, 286(1): 143–149. https://doi.org/10.1144/SP286.10

    Google Scholar 

  • Braun, A., Chen, J. Y., Waloszek, D., et al., 2007b. Siliceous Microfossils and Biosiliceous Sedimentation in the Lowermost Cambrian of China. In: Vickers–Rich, P., Komarower, P., eds., The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Publications, 286(1): 423–424. https://doi.org/10.1144/SP286.32

    Google Scholar 

  • Canfield, D. E., Poulton, S. W., Narbonne, G. M., 2007. Late–Neoproterozoic Deep–Ocean Oxygenation and the Rise of Animal Life. Science, 315(5808): 92–95. https://doi.org/10.1126/science.1135013

    Article  Google Scholar 

  • Cao, W. C., Feng, Q. L., Feng, F. B., et al., 2014. Radiolarian Kalimnasphaera from the Cambrian Shuijingtuo Formation in South China. Marine Micropaleontology, 110(2): 3–7. https://doi.org/10.1016/j.marmicro.2013.06.005

    Article  Google Scholar 

  • Chang, S., Feng, Q. L., Clausen, S., et al., 2017. Sponge Spicules from the Lower Cambrian in the Yanjiahe Formation, South China: The Earliest Biomineralizing Sponge Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 474: 36–44. https://doi.org/10.1016/j.palaeo.2016.06.032

    Article  Google Scholar 

  • Chen, P., 1984. Discovery of Lower Cambrian Small Shelly Fossils from Jijiapo, Yichang, West Hubei and Its Significance. Professional Papers of Stratigraphy and Palaeontology, 2: 49–65 (in Chinese)

    Google Scholar 

  • Cloud, P. E., 1968. Pre–Metazoan Evolution and the Origins of the Metazoa. In: Drake, E. T., ed., Evolution and Environment. Yale University Press, New Haven. 72

  • Conway Morris, S., Chen, M. G., 1990. Blastulospongia Polytreta N. Sp., an Enigmatic Organism from the Lower Cambrian of Hubei, China. Journal of Paleontology, 64(1): 26–30. https://doi.org/10.1017/s0022336000042207

    Article  Google Scholar 

  • Danelian, T., Moreira, D., 2004. Palaeontological and Molecular Arguments for the Origin of Silica–Secreting Marine Organisms. Comptes Rendus Palevol, 3(3): 229–236. https://doi.org/10.1016/j.crpv.2004.01.005

    Article  Google Scholar 

  • De Wever, P., Dumitrica, P., Caulet, J. P., et al., 2001. Radiolarians in the Sedimentary Record. Gordon and Breach Science Publishers, London. 525

    Google Scholar 

  • Decelle, J., Suzuki, N., Mahé, F., et al., 2012. Molecular Phylogeny and Morphological Evolution of the Acantharia (Radiolaria). Protist, 163(3): 435–450. https://doi.org/10.1016/j.protis.2011.10.002

    Article  Google Scholar 

  • Ding, R. X., Zou, H. P., Min, K., et al., 2017. Detrital Zircon U–Pb Geochronology of Sinian–Cambrian Strata in the Eastern Guangxi Area, China. Journal of Earth Science, 28(2): 295–304. https://doi.org/10.1007/s12583-017-0723-y

    Article  Google Scholar 

  • Elicki, O., 1998. First Report of Halkieria and Enigmatic Globular Fossils from the Central European Marianian (Lower Cambrian, Görlitz Syncline, Germany). Rev. Espa. Gonzalo Vidal., (1): 51–64

    Google Scholar 

  • Guo, J. F., Li, Y., Li, G. X., 2014. Small Shelly Fossils from the Early Cambrian Yanjiahe Formation, Yichang, Hubei, China. Gondwana Research, 25(3): 999–1007. https://doi.org/10.1016/j.gr.2013.03.007

    Article  Google Scholar 

  • He, T., Ling, H., Chen, Y., et al., 2013. Geochemical Character and Formation of Cherts from the Ediacaran Piyuancun Formation of Lantian Section in Xiuning, Southern Anhui. Geological Journal of China Universities, 19(4): 620–633. https://doi.org/10.16108/j.issn1006-7493.2013.04.016 (in Chinese with English Abstract)

    Google Scholar 

  • Hu, R., Li, S., Wang, W., et al., 2016. Source Characteristics of Tillite the Nantuo Formation in Three Gorges, Northern Yangtze Block: Evidence from Zricon Ages and Geochemical Composition. Earth Science, 41(10): 1630–1654. https://doi.org/10.3799/dqkx.2016.121 (in Chinese with English Abstract)

    Google Scholar 

  • Ishitani, Y., Ishikawa, S. A., Inagaki, Y., et al., 2011. Multigene Phylogenetic Analyses Including Diverse Radiolarian Species Support the “Retaria” Hypothesis—The Sister Relationship of Radiolaria and Foraminifera. Marine Micropaleontology, 81(1/2): 32–42. https://doi.org/10.1016/j.marmicro.2011.06.007

    Article  Google Scholar 

  • Jin, C. S., Li, C., Algeo, T. J., et al., 2016. Evidence for Marine Redox Control on Spatial Colonization of Early Animals during Cambrian Age 3 (c. 521–514 Ma) in South China. Geological Magazine, 154(6): 1360–1370. https://doi.org/10.1017/S0016756816001138

    Article  Google Scholar 

  • Khomentovsky, V. V., Karlova, G. A., 1993. Biostratigraphy of the Vendian–Cambrian Beds and the Lower Cambrian Boundary in Siberia. Geological Magazine, 130(1): 29–45. https://doi.org/10.1017/S0016756800000960

    Article  Google Scholar 

  • Klok, C. J., Hubb, A. J., Harrison, J. F., 2009. Single and Multigenerational Responses of Body Mass to Atmospheric Oxygen Concentrations In–Drosophila Melanogaster: Evidence for Roles of Plasticity and Evolution. Journal of Evolutionary Biology, 22(12): 2496–2504. https://doi.org/10.1111/j.1420-9101.2009.01866.x

    Article  Google Scholar 

  • Kouchinsky, A., Bengtson, S., Clausen, S., et al., 2013. An Early Cambrian Fauna of Skeletal Fossils from the Emyaksin Formation, Northern Siberia. Acta Palaeontologica Polonica, 60(2): 421–512. https://doi.org/10.4202/app.2012

    Google Scholar 

  • Kouchinsky, A., Bengtson, S., Landing, E., et al., 2017. Terreneuvian Stratigraphy and Faunas from the Anabar Uplift, Siberia. Acta Palaeontologica Polonica, 62(2): 311–440. https://doi.org/10.4202/app.00289.2016

    Google Scholar 

  • Li, C., Jin, C. S., Planavsky, N. J., et al., 2017. Coupled Oceanic Oxygenation and Metazoan Diversification during the Early–Middle Cambrian?. Geology, 45(8): 743–746. https://doi.org/10.1130/G39208.1

    Google Scholar 

  • Li, R. W., Lu, J. L., Zhang, S. K., et al., 1999. Organic Carbon Isotopes of the Sinian and Early Cambrian Black Shales on Yangtze Platform, China. Science in China Series D: Earth Sciences, 42(6): 595–603. https://doi.org/10.1007/bf02877787

    Article  Google Scholar 

  • Lipps, J. H., 1992. Proterozoic and Cambrian Skeletonized Protists. In: Schopf, J. W., Klein, C., eds., The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge. 237–240

  • Liu, K., Feng, Q. L., Shen, J., et al., 2017. Increased Productivity as a Primary Driver of Marine Anoxia in the Lower Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 491: 1–9. https://doi.org/10.1016/j.palaeo.2017.11.007

    Article  Google Scholar 

  • Maletz, J., 2011. Radiolarian Skeletal Structures and Biostratigraphy in the Early Palaeozoic (Cambrian–Ordovician). Palaeoworld, 20(2/3): 116–133. https://doi.org/10.1016/j.palwor.2010.12.007

    Article  Google Scholar 

  • Mason, R., Li, Y. J., Cao, K. N., et al., 2017. Ediacaran Macrofossils in Shunyang Valley, Sixi, Three Gorges District, Hubei Province, China. Journal of Earth Science, 28(4): 614–621. https://doi.org/10.1007/s12583-017-0773-1

    Article  Google Scholar 

  • Nazarov, B. B., 1973. Radiolarians from the Lowermost Horizons of the Batenev Mountain Ridge. In: Problems of Paleontology and Biostratigraphy of the Lower Cambrian of Siberia and the Far East. Novosibirsk, Nauka. 5–13 (in Russian)

    Google Scholar 

  • Nazarov, B. B., 1975. Lower and Middle Paleozoic Radiolarians of Kazakhstan (Methods of Investigation, Systematics and Stratigraphic Significance). In: Raaben, M. E., ed., Trudy Akademiya Nauk SSSR, Geologicheskii Institut. Izdatelstvo Nauka, Moscow. 1–203 (in Russian)

  • Obut, O. T., Iwata, K., 2000. Lower Cambrian Radiolaria from the Gorny Altai (Southern West Siberia). News of Paleontology and Stratigraphy, 2/3: 33–38

    Google Scholar 

  • Payne, J. L., Boyer, A. G., Brown, J. H., et al., 2009. Two–Phase Increase in the Maximum Size of Life over 3.5 Billion Years Reflects Biological Innovation and Environmental Opportunity. Proceedings of the National Academy of Sciences, 106(1): 24–27. https://doi.org/10.1073/pnas.0806314106

    Article  Google Scholar 

  • Peng, L., 1984. The Age and Tectonic Significance of Ophiolites of the Undorsum Group, Nei Mongol Autonomous Region. Science Bulletin, 29(7): 936–939

    Google Scholar 

  • Peng, S. C., Babcock, L. E., Cooper, R. A., 2012. The Cambrian Period. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., eds., The Geologic Time Scale 2012, Vol. 2. Elsevier BV, Amsterdam. 437–488. https://doi.org/10.1016/B978-0-444-59425-9.00019-6

  • Pickett, J. W., Jell, P. A., 1983. Middle Cambrian Sphinctozoa (Porifera) from New South Wales. Memoirs of the Association of Australasian Paleontologists, 1: 85–92

    Google Scholar 

  • Pouille, L., Obut, O., Danelian, T., et al., 2011. Lower Cambrian (Botomian) Polycystine Radiolaria from the Altai Mountains (Southern Siberia, Russia). Comptes Rendus Palevol, 10(8): 627–633. https://doi.org/10.1016/j.crpv.2011.05.004

    Article  Google Scholar 

  • Shu, D., Chen, L., 1989. Discovery of Early Cambrian Radiolarian and Its Significance. Science in China, 32(8): 986–994 (in Chinese)

    Google Scholar 

  • Steiner, M., Li, G., Qian, Y., et al., 2007. Neoproterozoic to Early Cambrian Small Shelly Fossil Assemblages and a Revised Biostratigraphic Correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254(2): 67–99. https://doi.org/10.1016/j.palaeo.2007.03.046

    Article  Google Scholar 

  • White, R. D., 1986. Cambrian Radiolaria from Utah. Journal of Paleontology, 60(3): 778–780. https://doi.org/10.1017/s0022336000022307

    Article  Google Scholar 

  • Won, M. Z., Below, R., 1999. Cambrian Radiolaria from the Georgina Basin, Queensland, Australia. Micropaleontology, 45(4): 325–363. https://doi.org/10.2307/1486119

    Article  Google Scholar 

  • Wrona, R., 2004. Cambrian Microfossils from Glacial Erratics of King George Island, Antarctica. Acta Palaeontologica Polonica, 49(1): 13–56

    Google Scholar 

  • Yang, B., Steiner, M., Li, G., et al., 2014. Terreneuvian Small Shelly Faunas of East Yunnan (South China) and Their Biostratigraphic Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 398: 28–58. https://doi.org/10.1016/j.palaeo.2013.07.003

    Article  Google Scholar 

  • Yin, H., Zeng, Y., Xia, W., 1994. Chert on the Southeast Continental Margin of the Yangtze Platform. Acta Geologica Sinica, 68(2): 132–141 (in Chinese with English Abstract)

    Google Scholar 

  • Yin, L. M., Wang, C. J., Zhao, Y. L., et al., 2016. Early–Middle Cambrian Palynomorph Microfossils and Related Geochemical Events in South China. Journal of Earth Science, 27(2): 180–186. https://doi.org/10.1007/s12583-016-0689-1

    Article  Google Scholar 

  • Zhang, L., Danelian, T., Feng, Q. L., et al., 2013. On the Lower Cambrian Biotic and Geochemical Record of the Hetang Formation (Yangtze Platform, South China): Evidence for Biogenic Silica and Possible Presence of Radiolaria. Journal of Micropalaeontology, 32(2): 207–217. https://doi.org/10.1144/jmpaleo2013-003

    Article  Google Scholar 

  • Zhang, M. Z., Peng, S. B., Zhang, L., et al., 2016. New Recognition of Carbonate Nodules Genesis in Sinian Doushantuo Formation in Zigui Area and Its Geological Implication. Earth Science, 41(12): 1977–1994. https://doi.org/10.3799/dqkx.2016.138 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, X. G., Aldridge, R. J., 2007. Development and Diversification of Trunk Plates of the Lower Cambrian Lobopodians. Palaeontology, 50(2): 401–415. https://doi.org/10.1111/j.1475-4983.2006.00634.x

    Article  Google Scholar 

  • Zhang, X. L., Cui, L. H., 2016. Oxygen Requirements for the Cambrian Explosion. Journal of Earth Science, 27(2): 187–195. https://doi.org/10.1007/s12583-016-0690-8

    Article  Google Scholar 

  • Zhang, X. L., Shu, D. G., Han, J., et al., 2014. Triggers for the Cambrian Explosion: Hypotheses and Problems. Gondwana Research, 25(3): 896–909. https://doi.org/10.1016/j.gr.2013.06.001

    Article  Google Scholar 

  • Zhao, G., 1999. The Influence of Biogenic Procession on the Accumulation and Precipiation of Silica—An Example from South of Anhui and West of Zhejiang. Acta Sedimentologica Sinica, 17(1): 30–37. https://doi.org/10.1427/j.cnki.cjxb.1999.01.005 (in Chinese with English Abstract)

    Google Scholar 

  • Zheng, N., Song, T., Li, Y., et al., 2012. The Discovery of the Lower Cambrian and Middle Ordovician Radiolaria in the South China Orogenic Belt. Geology in China, 39(1): 260–265 (in Chinese with English Abstract)

    Google Scholar 

  • Zhou, C. M., Jiang, S. Y., 2009. Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China: Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3/4): 279–286. https://doi.org/10.1016/j.palaeo.2008.10.024

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the NSFC (Nos. 41430101, 41502014). We express our sincere thanks to Yan Zhang, Fenggang Lan, Wei Guo and Ke Zhang for help in the fieldwork. Professor Jonathon Aichison and anonymous reviewers are greatly appreciated for improving the manuscript. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0960-0..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglai Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, S., Feng, Q. & Zhang, L. New Siliceous Microfossils from the Terreneuvian Yanjiahe Formation, South China: The Possible Earliest Radiolarian Fossil Record. J. Earth Sci. 29, 912–919 (2018). https://doi.org/10.1007/s12583-017-0960-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0960-0

Key words

Navigation