Skip to main content

Advertisement

Log in

Quantitative Electrophysiological Evaluation of the Analgesic Efficacy of Two Lappaconitine Derivatives: A Window into Antinociceptive Drug Mechanisms

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Quantitative evaluation of analgesic efficacy improves understanding of the antinociceptive mechanisms of new analgesics and provides important guidance for their development. Lappaconitine (LA), a potent analgesic drug extracted from the root of natural Aconitum species, has been clinically used for years because of its effective analgesic and non-addictive properties. However, being limited to ethological experiments, previous studies have mainly investigated the analgesic effect of LA at the behavioral level, and the associated antinociceptive mechanisms are still unclear. In this study, electrocorticogram (ECoG) technology was used to investigate the analgesic effects of two homologous derivatives of LA, Lappaconitine hydrobromide (LAH) and Lappaconitine trifluoroacetate (LAF), on Sprague-Dawley rats subjected to nociceptive laser stimuli, and to further explore their antinociceptive mechanisms. We found that both LAH and LAF were effective in reducing pain, as manifested in the remarkable reduction of nocifensive behaviors and laser-evoked potentials (LEPs) amplitudes (N2 and P2 waves, and gamma-band oscillations), and significantly prolonged latencies of the LEP-N2/P2. These changes in LEPs reflect the similar antinociceptive mechanism of LAF and LAH, i.e., inhibition of the fast signaling pathways. In addition, there were no changes in the auditory-evoked potential (AEP-N1 component) before and after LAF or LAH treatment, suggesting that neither drug had a central anesthetic effect. Importantly, compared with LAH, LAF was superior in its effects on the magnitudes of gamma-band oscillations and the resting-state spectra, which may be associated with their differences in the octanol/water partition coefficient, degree of dissociation, toxicity, and glycine receptor regulation. Altogether, jointly applying nociceptive laser stimuli and ECoG recordings in rats, we provide solid neural evidence for the analgesic efficacy and antinociceptive mechanisms of derivatives of LA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Foster NE, Anema JR, Cherkin D, Chou R, Cohen SP, Gross DP. Prevention and treatment of low back pain: Evidence, challenges, and promising directions. Lancet 2018, 391: 2368–2383.

    Article  PubMed  Google Scholar 

  2. Walsh M, Morrison TG, McGuire BE. Chronic pain in adults with an intellectual disability: Prevalence, impact, and health service use based on caregiver report. Pain 2011, 152: 1951–1957.

    Article  PubMed  Google Scholar 

  3. Bouhassira D, Attal N. Emerging therapies for neuropathic pain: New molecules or new indications for old treatments? Pain 2018, 159: 576–582.

    Article  PubMed  Google Scholar 

  4. Academy of Cognitive Disorders of China (ACDC), Han YL, Jia JJ, Li X, Lv Y, Sun X, et al. Expert consensus on the care and management of patients with cognitive impairment in China. Neurosci Bull 2020, 36: 307–320.

    Article  CAS  Google Scholar 

  5. Negus SS. Core outcome measures in preclinical assessment of candidate analgesics. Pharmacol Rev 2019, 71: 225–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. da Costa BR, Reichenbach S, Keller N, Nartey L, Wandel S, Jüni P, et al. RETRACTED: Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: A network meta-analysis. Lancet 2016, 387: 2093–2105.

    Article  PubMed  CAS  Google Scholar 

  7. Gaudioso C, Hao JZ, Martin-Eauclaire MF, Gabriac M, Delmas P. Menthol pain relief through cumulative inactivation of voltage-gated sodium channels. Pain 2012, 153: 473–484.

    Article  CAS  PubMed  Google Scholar 

  8. Zhu XC, Ge CT, Wang P, Zhang JL, Fu CY. Analgesic effects of lappaconitine in leukemia bone pain in a mouse model. PeerJ 2015, 3: e936.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sun WX, Zhang S, Wang H, Wang YP. Synthesis, characterization and antinociceptive properties of the lappaconitine salts. Med Chem Res 2015, 24: 3474–3482.

    Article  CAS  Google Scholar 

  10. Pang L, Liu CY, Gong GH, Quan ZS. Synthesis, in vitro and in vivo biological evaluation of novel lappaconitine derivatives as potential anti-inflammatory agents. Acta Pharm Sin B 2020, 10: 628–645.

    Article  CAS  PubMed  Google Scholar 

  11. Sun W, Saldaña MD, Fan L, Zhao Y, Dong T, Jin Y, et al. Sulfated polysaccharide heparin used as carrier to load hydrophobic lappaconitine. Int J Biol Macromol 2016, 84: 275–280.

    Article  CAS  PubMed  Google Scholar 

  12. Teng GX, Zhang XF, Zhang C, Chen LL, Sun WX, Qiu T, et al. Lappaconitine trifluoroacetate contained polyvinyl alcohol nanofibrous membranes: Characterization, biological activities and transdermal application. Mater Sci Eng C Mater Biol Appl 2020, 108: 110515.

    Article  CAS  PubMed  Google Scholar 

  13. Wang YZ, Xiao YQ, Zhang C, Sun XM. Study of analgesic and anti-inflammatory effects of lappaconitine gelata. J Tradit Chin Med 2009, 29: 141–145.

    Article  PubMed  Google Scholar 

  14. Wada K, Ohkoshi E, Morris-Natschke SL, Bastow KF, Lee KH. Cytotoxic esterified diterpenoid alkaloid derivatives with increased selectivity against a drug-resistant cancer cell line. Bioorg Med Chem Lett 2012, 22: 249–252.

    Article  CAS  PubMed  Google Scholar 

  15. Labus JS, Keefe FJ, Jensen MP. Self-reports of pain intensity and direct observations of pain behavior: When are they correlated? Pain 2003, 102: 109–124.

    Article  PubMed  Google Scholar 

  16. Sirsch E, Lukas A, Drebenstedt C, Gnass I, Laekeman M, Kopke K, et al. Pain assessment for older persons in nursing home care: An evidence-based practice guideline. J Am Med Dir Assoc 2020, 21: 149–163.

    Article  PubMed  Google Scholar 

  17. Mancini F, Nash T, Iannetti GD, Haggard P. Pain relief by touch: A quantitative approach. Pain 2014, 155: 635–642.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cruccu G, Pennisi E, Truini A, Iannetti GD, Romaniello A, Le Pera D, et al. Unmyelinated trigeminal pathways as assessed by laser stimuli in humans. Brain 2003, 126: 2246–2256.

    Article  CAS  PubMed  Google Scholar 

  19. Gross J, Schnitzler A, Timmermann L, Ploner M. Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol 2007, 5: 1168–1173. https://doi.org/10.1371/journal.pbio.0050133.

    Article  CAS  Google Scholar 

  20. Hu L, Valentini E, Zhang ZG, Liang M, Iannetti GD. The primary somatosensory cortex contributes to the latest part of the cortical response elicited by nociceptive somatosensory stimuli in humans. Neuroimage 2014, 84: 383–393.

    Article  CAS  PubMed  Google Scholar 

  21. Sikandar S, Ronga I, Iannetti GD, Dickenson AH. Neural coding of nociceptive stimuli-from rat spinal neurones to human perception. Pain 2013, 154: 1263–1273.

    Article  PubMed  Google Scholar 

  22. Zhang SY, Seymour B. Technology for chronic pain. Curr Biol 2014, 24: R930–R935.

    Article  CAS  PubMed  Google Scholar 

  23. Sun WX, Wang YP, Zhang J, Yu K. X-ray structure analysis of lappaconitine. Nat Prod Res 2009, 23: 960–962.

    Article  CAS  PubMed  Google Scholar 

  24. Xia XL, Peng WW, Iannetti GD, Hu L. Laser-evoked cortical responses in freely-moving rats reflect the activation of C-fibre afferent pathways. Neuroimage 2016, 128: 209–217.

    Article  CAS  PubMed  Google Scholar 

  25. Shaw FZ, Chen RF, Tsao HW, Yen CT. Comparison of touch- and laser heat-evoked cortical field potentials in conscious rats. Brain Res 1999, 824: 183–196.

    Article  CAS  PubMed  Google Scholar 

  26. Iannetti GD, Zambreanu L, Tracey I. Similar nociceptive afferents mediate psychophysical and electrophysiological responses to heat stimulation of glabrous and hairy skin in humans. J Physiol 2006, 577: 235–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu L, Xia XL, Peng WW, Su WX, Luo F, Yuan H, et al. Was it a pain or a sound? Across-species variability in sensory sensitivity. Pain 2015, 156: 2449–2457.

    PubMed  Google Scholar 

  28. Valentini E, Koch K, Nicolardi V, Aglioti SM. Mortality salience modulates cortical responses to painful somatosensory stimulation: Evidence from slow wave and delta band activity. Neuroimage 2015, 120: 12–24.

    Article  PubMed  Google Scholar 

  29. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004, 134: 9–21.

    Article  PubMed  Google Scholar 

  30. Qiao ZM, Wang JY, Han JS, Luo F. Dynamic processing of nociception in cortical network in conscious rats: A laser-evoked field potential study. Cell Mol Neurobiol 2008, 28: 671–687.

    Article  PubMed  Google Scholar 

  31. Shaw FZ, Chen RF, Yen CT. Dynamic changes of touch- and laser heat-evoked field potentials of primary somatosensory cortex in awake and pentobarbital-anesthetized rats. Brain Res 2001, 911: 105–115.

    Article  CAS  PubMed  Google Scholar 

  32. Simpson GV, Knight RT. Multiple brain systems generating the rat auditory evoked potential. I. Characterization of the auditory cortex response. Brain Res 1993, 602: 240–250.

    Article  CAS  PubMed  Google Scholar 

  33. Valentini E, Hu L, Chakrabarti B, Hu Y, Aglioti SM, Iannetti GD. The primary somatosensory cortex largely contributes to the early part of the cortical response elicited by nociceptive stimuli. Neuroimage 2012, 59: 1571–1581.

    Article  CAS  PubMed  Google Scholar 

  34. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates: Hard, Cover Academic Press, London, 2006.

    Google Scholar 

  35. Zhang ZG, Hu L, Hung YS, Mouraux A, Iannetti GD. Gamma-band oscillations in the primary somatosensory cortex——a direct and obligatory correlate of subjective pain intensity. J Neurosci 2012, 32: 7429–7438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peng WW, Xia XL, Yi M, Huang G, Zhang ZG, Iannetti G, et al. Brain oscillations reflecting pain-related behavior in freely moving rats. Pain 2018, 159: 106–118.

    Article  PubMed  Google Scholar 

  37. Mouraux A, Iannetti GD. Across-trial averaging of event-related EEG responses and beyond. Magn Reson Imaging 2008, 26: 1041–1054.

    Article  CAS  PubMed  Google Scholar 

  38. Hu L, Xiao P, Zhang ZG, Mouraux A, Iannetti GD. Single-trial time-frequency analysis of electrocortical signals: Baseline correction and beyond. Neuroimage 2014, 84: 876–887.

    Article  CAS  PubMed  Google Scholar 

  39. Hu L, Zhang ZG, Mouraux A, Iannetti GD. Multiple linear regression to estimate time-frequency electrophysiological responses in single trials. Neuroimage 2015, 111: 442–453.

    Article  CAS  PubMed  Google Scholar 

  40. Lomas T, Ivtzan I, Fu CH. A systematic review of the neurophysiology of mindfulness on EEG oscillations. Neurosci Biobehav Rev 2015, 57: 401–410.

    Article  PubMed  Google Scholar 

  41. Babiloni C, Pistoia F, Sarà M, Vecchio F, Buffo P, Conson M, et al. Resting state eyes-closed cortical rhythms in patients with locked-in-syndrome: An EEG study. Clin Neurophysiol 2010, 121: 1816–1824.

    Article  PubMed  Google Scholar 

  42. Zinn MA, Zinn ML, Valencia I, Jason LA, Montoya JG. Cortical hypoactivation during resting EEG suggests central nervous system pathology in patients with chronic fatigue syndrome. Biol Psychol 2018, 136: 87–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Telkes L, Hancu M, Paniccioli S, Grey R, Briotte M, McCarthy K, et al. Differences in EEG patterns between tonic and high frequency spinal cord stimulation in chronic pain patients. Clin Neurophysiol 2020, 131: 1731–1740.

    Article  PubMed  Google Scholar 

  44. de Vries M, Wilder-Smith OH, Jongsma ML, van den Broeke EN, Arns M, van Goor H, et al. Altered resting state EEG in chronic pancreatitis patients: Toward a marker for chronic pain. J Pain Res 2013, 6: 815–824.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mayhew SD, Iannetti GD, Woolrich MW, Wise RG. Automated single-trial measurement of amplitude and latency of laser-evoked potentials (LEPs) using multiple linear regression. Clin Neurophysiol 2006, 117: 1331–1344.

    Article  CAS  PubMed  Google Scholar 

  46. Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 1997, 277: 968–971.

    Article  CAS  PubMed  Google Scholar 

  47. Ameri A. The effects of Aconitum alkaloids on the central nervous system. Prog Neurobiol 1998, 56: 211–235.

    Article  CAS  PubMed  Google Scholar 

  48. Li YF, Zheng YM, Yu Y, Gan Y, Gao ZB. Inhibitory effects of lappaconitine on the neuronal isoforms of voltage-gated sodium channels. Acta Pharmacol Sin 2019, 40: 451–459.

    Article  CAS  PubMed  Google Scholar 

  49. Wright SN. Irreversible block of human heart (hH1) sodium channels by the plant alkaloid lappaconitine. Mol Pharmacol 2001, 59: 183–192.

    Article  CAS  PubMed  Google Scholar 

  50. Ren MY, Yu QT, Shi CY, Luo JB. Anticancer activities of C18-, C19-, C20-, and bis-diterpenoid alkaloids derived from genus Aconitum. Molecules 2017, 22: E267.

    Article  PubMed  CAS  Google Scholar 

  51. Sun ML, Ao JP, Wang YR, Huang Q, Li TF, Li XY, et al. Lappaconitine, a C18-diterpenoid alkaloid, exhibits antihypersensitivity in chronic pain through stimulation of spinal dynorphin A expression. Psychopharmacology (Berl) 2018, 235: 2559–2571.

    Article  CAS  Google Scholar 

  52. Tommaso MD, Santostasi R, Devitofrancesco V, Franco G, Vecchio E, Delussi M, et al. A comparative study of cortical responses evoked by transcutaneous electrical vs CO2 laser stimulation. Clin Neurophysiol 2011, 122: 2482–2487.

    Article  PubMed  Google Scholar 

  53. Ur Rashid M, Alamzeb M, Ali S, Ullah Z, Shah ZA, Naz I, et al. The chemistry and pharmacology of alkaloids and allied nitrogen compounds from Artemisia species: A review. Phytother Res 2019, 33: 2661–2684.

    Article  CAS  PubMed  Google Scholar 

  54. Munegumi T. Where is the border line between strong acids and weak acids? World J Chem Educ 2013, 1: 12–16.

    Google Scholar 

  55. Tetko IV, Bruneau P. Application of ALOGPS to predict 1-octanol/water distribution coefficients, logP, and logD, of AstraZeneca in-house database. J Pharm Sci 2004, 93: 3103–3110.

    Article  CAS  PubMed  Google Scholar 

  56. Zakeri-Milani P, Tajerzadeh H, Islambolchilar Z, Barzegar S, Valizadeh H. The relation between molecular properties of drugs and their transport across the intestinal membrane. Daru 2006, 14: 164–171.

    CAS  Google Scholar 

  57. Valentini E, Betti V, Hu L, Aglioti SM. Hypnotic modulation of pain perception and of brain activity triggered by nociceptive laser stimuli. Cortex 2013, 49: 446–462.

    Article  PubMed  Google Scholar 

  58. Tipps ME, Iyer SV, John Mihic S. Trifluoroacetate is an allosteric modulator with selective actions at the glycine receptor. Neuropharmacology 2012, 63: 368–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang X, Shaffer PL, Ayube S, Bregman H, Chen H, Lehto SG, et al. Crystal structures of human glycine receptor α3 bound to a novel class of analgesic potentiators. Nat Struct Mol Biol 2017, 24: 108–113.

    Article  PubMed  CAS  Google Scholar 

  60. Shi YQ, Chen YY, Wang Y. Kir2.1 channel regulation of glycinergic transmission selectively contributes to dynamic mechanical allodynia in a mouse model of spared nerve injury. Neurosci Bull 2019, 35: 301–314.

    Article  CAS  PubMed  Google Scholar 

  61. Ní Mhuircheartaigh R, Warnaby C, Rogers R, Jbabdi S, Tracey I. Slow-wave activity saturation and thalamocortical isolation during propofol anesthesia in humans. Sci Transl Med 2013, 5: 208ra148.

    Article  PubMed  CAS  Google Scholar 

  62. Weber F, Zimmermann M, Bein T. The impact of acoustic stimulation on the AEP monitor/2 derived composite auditory evoked potential index under awake and anesthetized conditions. Anesth Analg 2005, 101: 435–439.

    Article  PubMed  Google Scholar 

  63. Zhang FR, Wang FX, Yue LP, Zhang HJ, Peng WW, Hu L. Cross-species investigation on resting state electroencephalogram. Brain Topogr 2019, 32: 808–824.

    Article  PubMed  Google Scholar 

  64. Li M, Cai ZW. Simultaneous determination of aconitine, mesaconitine, hypaconitine, bulleyaconitine and lappaconitine in human urine by liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal Methods 2013, 5: 4034–4038.

    Article  CAS  Google Scholar 

  65. Goldstein DB. Sodium bromide and sodium valproate: Effective suppressants of ethanol withdrawal reactions in mice. J Pharmacol Exp Ther 1979, 208: 223–227.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51873175) and the Special Fund of Guiding Scientific and Technological Innovation and Development in Gansu Province, China (2019ZX-05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lupeng Yue or Ji Zhang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 1241 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, G., Zhang, F., Li, Z. et al. Quantitative Electrophysiological Evaluation of the Analgesic Efficacy of Two Lappaconitine Derivatives: A Window into Antinociceptive Drug Mechanisms. Neurosci. Bull. 37, 1555–1569 (2021). https://doi.org/10.1007/s12264-021-00774-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00774-w

Keywords

Navigation