Skip to main content

Advertisement

Log in

Combining MRI and cognitive evaluation to classify concussion in university athletes

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Current methods of concussion assessment lack the objectivity and reliability to detect neurological injury. This multi-site study uses combinations of neuroimaging (diffusion tensor imaging and resting state functional MRI) and cognitive measures to train algorithms to detect the presence of concussion in university athletes. Athletes (29 concussed, 48 controls) completed symptom reports, brief cognitive evaluation, and MRI within 72 h of injury. Hierarchical linear regression compared groups on cognitive and neuroimaging measures while controlling for sex and data collection site. Logistic regression and support vector machine models were trained using cognitive and neuroimaging measures and evaluated for overall accuracy, sensitivity, and specificity. Concussed athletes reported greater symptoms than controls (∆R2 = 0.32, p < .001), and performed worse on tests of concentration (∆R2 = 0.07, p < .05) and delayed memory (∆R2 = 0.17, p < .001). Concussed athletes showed lower functional connectivity within the frontoparietal and primary visual networks (p < .05), but did not differ on mean diffusivity and fractional anisotropy. Of the cognitive measures, classifiers trained using delayed memory yielded the best performance with overall accuracy of 71%, though sensitivity was poor at 46%. Of the neuroimaging measures, classifiers trained using mean diffusivity yielded similar accuracy. Combining cognitive measures with mean diffusivity increased overall accuracy to 74% and sensitivity to 64%, comparable to the sensitivity of symptom report. Trained algorithms incorporating both MRI and cognitive performance variables can reliably detect common neurobiological sequelae of acute concussion. The integration of multi-modal data can serve as an objective, reliable tool in the assessment and diagnosis of concussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due to the fact that they represent an excerpt of research in progress by the BrainScope Company, Inc. Data may be available upon reasonable request and with permission of BrainScope (info@brainscope.com).

Code availability

Not applicable

References

  • Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3). https://doi.org/10.1016/j.nurt.2007.05.011.

  • American Congress of Rehabilitation Medicine, Mild Traumatic Brain Injury Committee, Head Injury Interdisciplinary Special Interest Group. (1993). Definition of mild traumatic brain injury. Journal of Head Trauma Rehabilitation, 8(3). https://doi.org/10.1097/00001199-199309000-00010.

  • Amyot, F., Arciniegas, D. B., Brazaitis, M. P., Curley, K. C., Diaz-Arrastia, R., Gandjbakhche, A., Herscovitch, P., Hinds, S. R., 2nd, Manley, G. T., Pacifico, A., Razumovsky, A., Riley, J., Salzer, W., Shih, R., Smirniotopoulos, J. G., & Stocker, D. (2015). A Review of the Effectiveness of Neuroimaging Modalities for the Detection of Traumatic Brain Injury. Journal of Neurotrauma, 32(22). https://doi.org/10.1089/neu.2013.3306.

  • Bazarian, J. J., Elbin, R. J., Casa, D. J., Hotz, G. A., Neville, C., Lopez, R. M., Schnyer, D. M., Yeargin, S., & Covassin, T. (2021). Validation of a Machine Learning Brain Electrical Activity-Based Index to Aid in Diagnosing Concussion Among Athletes. JAMA Network Open, 4(2). https://doi.org/10.1001/jamanetworkopen.2020.37349.

  • Bazarian, J. J., Zhong, J., Blyth, B., Zhu, T., Kavcic, V., & Peterson, D. (2007). Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: A pilot study. Journal of Neurotrauma, 24(9). https://doi.org/10.1089/neu.2007.0241.

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Statistical Methodology), 57(1). https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

  • Bonnelle, V., Leech, R., Kinnunen, K. M., Ham, T. E., Beckmann, C. F., De Boissezon, X., Greenwood, R. J., & Sharp, D. J. (2011). Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. The Journal of Neuroscience, 31(38). https://doi.org/10.1523/jneurosci.1163-11.2011.

  • Borich, M., Babul, A. N., Yuan, P. H., Boyd, L., & Virji-Babul, N. (2015). Alterations in resting-state brain networks in concussed adolescent athletes. Journal of Neurotrauma, 32(4), 265–271. https://doi.org/10.1089/neu.2013.3269

    Article  PubMed  Google Scholar 

  • Broglio, S. P., Cantu, R. C., Gioia, G. A., Guskiewicz, K. M., Kutcher, J., Palm, M., & McLeod, T. C. V. (2014). National Athletic Trainers' Association position statement: Management of sport concussion. Journal of Athletic Training, 49(2). https://doi.org/10.4085/1062-6050-49.1.07.

  • Bunea, F., She, Y., Ombao, H., Gongvatana, A., Devlin, K., & Cohen, R. (2011). Penalized least squares regression methods and applications to neuroimaging. Neuroimage, 55(4). https://doi.org/10.1016/j.neuroimage.2010.12.028.

  • Centers for Disease Control and Prevention. (2007). Nonfatal traumatic brain injuries from sports and recreation activities–United States, 2001–2005. MMWR. Morbidity and Mortality Weekly Report, 56(29), 733–737.

    Google Scholar 

  • Chin, E. Y., Nelson, L. D., Barr, W. B., McCrory, P., & McCrea, M. A. (2016). Reliability and validity of the Sport Concussion Assessment Tool–3 (SCAT3) in high school and collegiate athletes. American Journal of Sports Medicine, 44(9). https://doi.org/10.1177/0363546516648141.

  • Churchill, N. W., Hutchison, M. G., Richards, D., Leung, G., Graham, S. J., & Schweizer, T. A. (2017). The first week after concussion: Blood flow, brain function and white matter microstructure. Neuroimage: Clinical14. https://doi.org/10.1016/j.nicl.2017.02.015.

  • Churchill, N. W., Caverzasi, E., Graham, S. J., Hutchison, M. G., & Schweizer, T. A. (2019a). White matter during concussion recovery: Comparing diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). Human Brain Mapping, 40(6). https://doi.org/10.1002/hbm.24500.

  • Churchill, N. W., Hutchison, M. G., Graham, S. J., & Schweizer, T. A. (2019b). Mapping brain recovery after concussion: From acute injury to 1 year after medical clearance. Neurology, 93(21). https://doi.org/10.1212/WNL.0000000000008523.

  • Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3). https://doi.org/10.1006/cbmr.1996.0014.

  • Cox, R. W., & Hyde, J. S. (1997). Software tools for analysis and visualization of fMRI data. NMR in Biomedicine, 10(4‐5). https://doi.org/10.1002/(sici)1099-1492(199706/08)10:4/5<171::aid-nbm453>3.0.co;2-l.

  • Dale, A. M., & Sereno, M. I. (1993). Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. Journal of Cognitive Neuroscience, 5(2). https://doi.org/10.1162/jocn.1993.5.2.162.

  • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage, 9(2). https://doi.org/10.1006/nimg.1998.0395.

  • Downey, R. I., Hutchison, M. G., & Comper, P. (2018). Determining sensitivity and specificity of the Sport Concussion Assessment Tool 3 (SCAT3) components in university athletes. Brain Injury, 32(11). https://doi.org/10.1080/02699052.2018.1484166.

  • Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., Papademetris, X., & Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11). https://doi.org/10.1038/nn.4135.

  • Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97(20). https://doi.org/10.1073/pnas.200033797.

  • Fischl, B., Liu, A., & Dale, A. M. (2001). Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging, 20(1). https://doi.org/10.1109/42.906426.

  • Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., & Dale, A. M. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3). https://doi.org/10.1016/s0896-6273(02)00569-x.

  • Fischl, B., Van Der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., Busa, E., Seidman, L. J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., & Dale, A. M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1). https://doi.org/10.1093/cercor/bhg087.

  • Fonov, V. S., Evans, A. C., McKinstry, R. C., Almli, C. R., & Collins, D. L. (2009). Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. Neuroimage, (47). https://doi.org/10.1016/s1053-8119(09)70884-5.

  • Frencham, K. A., Fox, A. M., & Maybery, M. T. (2005). Neuropsychological studies of mild traumatic brain injury: A meta-analytic review of research since 1995. Journal of Clinical and Experimental Neuropsychology, 27(3). https://doi.org/10.1080/13803390490520328.

  • Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1). https://doi.org/10.18637/jss.v033.i01.

  • Giza, C. C., Kutcher, J. S., Ashwal, S., Barth, J., Getchius, T. S., Gioia, G. A., Gronseth, G. S., Guskiewicz, K., Mandel, S., Manley, G., McKeag, D. B., Thurman, D. J., & Zafonte, R. (2013). Summary of evidence-based guideline update: Evaluation and management of concussion in sports: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology, 80(24). https://doi.org/10.1212/wnl.0b013e31828d57dd.

  • Glover, G. H., Mueller, B. A., Turner, J. A., Van Erp, T. G., Liu, T. T., Greve, D. N., Voyvodic, J. T., Rasmussen, J., Brown, G. G., Keator, D. B., Calhoun, V. D., Lee, H. J., Ford, J. M., Mathalon, D. H., Diaz, M., O’Leary, D. S., Gadde, S., Preda, A., Lim, K. O., Wible, C. G., Stern, H. S., Belger, A., McCarthy, G., Ozyurt, B., & Potkin, S. G. (2012). Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies. Journal of Magnetic Resonance Imaging, 36(1). https://doi.org/10.1002/jmri.23572.

  • Gold, S., Christian, B., Arndt, S., Zeien, G., Cizadlo, T., Johnson, D. L., Flaum, M., & Andreasen, N. C. (1998). Functional MRI statistical software packages: A comparative analysis. Human Brain Mapping, 6(2). https://doi.org/10.1002/(sici)1097-0193(1998)6:2<73::aid-hbm1>3.0.co;2-h.

  • Hellstrøm, T., Westlye, L. T., Kaufmann, T., Trung Doan, N., Søberg, H. L., Sigurdardottir, S., Nordhøy, W., Helseth, E., Andreassen, O. A., & Andelic, N. (2017). White matter microstructure is associated with functional, cognitive and emotional symptoms 12 months after mild traumatic brain injury. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-13628-1.

  • Hellyer, P. J., Leech, R., Ham, T. E., Bonnelle, V., & Sharp, D. J. (2013). Individual prediction of white matter injury following traumatic brain injury. Annals of Neurology, 73(4). https://doi.org/10.1002/ana.23824.

  • Holm, L., David Cassidy, J., Carroll, L., & Borg, J. (2005). Summary of the WHO collaborating centre for neurotrauma task force on mild traumatic brain injury. Journal of Rehabilitation Medicine, 37(3). https://doi.org/10.1080/16501970510027321.

  • Hughes, D. G., Jackson, A., Mason, D. L., Berry, E., Hollis, S., & Yates, D. W. (2004). Abnormalities on magnetic resonance imaging seen acutely following mild traumatic brain injury: Correlation with neuropsychological tests and delayed recovery. Neuroradiology, 46(7). https://doi.org/10.1007/s00234-004-1227-x.

  • Hunter, J. V., Wilde, E. A., Tong, K. A., & Holshouser, B. A. (2012). Emerging imaging tools for use with traumatic brain injury research. Journal of Neurotrauma, 29(4). https://doi.org/10.1089/neu.2011.1906.

  • Irfanoglu, M. O., Modi, P., Nayak, A., Hutchinson, E. B., Sarlls, J., & Pierpaoli, C. (2015). DR-BUDDI (Diffeomorphic Registration for Blip-Up blip-Down Diffusion Imaging) method for correcting echo planar imaging distortions. NeuroImage, 106. https://doi.org/10.1016/j.neuroimage.2014.11.042.

  • Irfanoglu, M. O., Nayak, A., Jenkins, J., & Pierpaoli, C. (2017, April). TORTOISE v3: Improvements and new features of the NIH diffusion MRI processing pipeline. Presented at the ISMRM 25th annual meeting.

  • Jo, H. J., Saad, Z. S., Simmons, W. K., Milbury, L. A., & Cox, R. W. (2010). Mapping sources of correlation in resting state FMRI, with artifact detection and removal. Neuroimage, 52(2). https://doi.org/10.1016/j.neuroimage.2010.04.246.

  • Johnson, E. W., Kegel, N. E., & Collins, M. W. (2011). Neuropsychological assessment of sport-related concussion. Clinics in Sports Medicine, 30(1). https://doi.org/10.1016/j.csm.2010.08.007.

  • Karr, J. E., Areshenkoff, C. N., & Garcia-Barrera, M. A. (2014). The neuropsychological outcomes of concussion: A systematic review of meta-analyses on the cognitive sequelae of mild traumatic brain injury. Neuropsychology, 28(3). https://doi.org/10.1037/neu0000037.

  • Kim, H. J., Tsao, J. W., & Stanfill, A. G. (2018). The current state of biomarkers of mild traumatic brain injury. JCI Insight, 3(1). https://doi.org/10.1172/jci.insight.97105.

  • Kim, N., Branch, C. A., Kim, M., & Lipton, M. L. (2013). Whole brain approaches for identification of microstructural abnormalities in individual patients: Comparison of techniques applied to mild traumatic brain injury. PLoS One, 8(3). https://doi.org/10.1371/journal.pone.0059382.

  • Lancaster, M. A., Olson, D. V., McCrea, M. A., Nelson, L. D., LaRoche, A. A., & Muftuler, L. T. (2016). Acute white matter changes following sport‐related concussion: A serial diffusion tensor and diffusion kurtosis tensor imaging study. Human Brain Mapping37(11). https://doi.org/10.1002/hbm.23278.

  • Ling, J. M., Pena, A., Yeo, R. A., Merideth, F. L., Klimaj, S., Gasparovic, C., & Mayer, A. R. (2012). Biomarkers of increased diffusion anisotropy in semi-acute mild traumatic brain injury: A longitudinal perspective. Brain135(4). https://doi.org/10.1093/brain/aws073.

  • Luo, X., Lin, D., Xia, S., Wang, D., Weng, X., Huang, W., & Ye, H. (2021). machine learning classification of mild traumatic brain injury using whole-brain functional activity: A radiomics analysis. Disease Markers, 2021. https://doi.org/10.1155/2021/3015238.

  • Madhavan, R., Joel, S. E., Mullick, R., Cogsil, T., Niogi, S. N., Tsiouris, A. J., Mukherjee, P., Masdeu, J. C., Marinelli, L., & Shetty, T. (2019). Longitudinal resting state functional connectivity predicts clinical outcome in mild traumatic brain injury. Journal of Neurotrauma36(5). https://doi.org/10.1089/neu.2018.5739.

  • Marek, S., & Dosenbach, N. U. (2018). The frontoparietal network: Function, electrophysiology, and importance of individual precision mapping. Dialogues in Clinical Neuroscience20(2). https://doi.org/10.31887/DCNS.2018.20.2/smarek.

  • Mayer, A. R., Bellgowan, P. S., & Hanlon, F. M. (2015). Functional magnetic resonance imaging of mild traumatic brain injury. Neuroscience and Biobehavioral Reviews, 49. https://doi.org/10.1016/j.neubiorev.2014.11.016.

  • Mayer, A. R., Ling, J., Mannell, M. V., Gasparovic, C., Phillips, J. P., Doezema, D., Reichard, R., & Yeo, R. (2010). A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology74(8). https://doi.org/10.1212/wnl.0b013e3181d0ccdd.

  • Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping32(11). https://doi.org/10.1002/hbm.21151.

  • McCrea, M., Kelly, J. P., Randolph, C., Cisler, R., & Berger, L. (2002). Immediate neurocognitive effects of concussion. Neurosurgery50(5). https://doi.org/10.1097/00006123-200205000-00017.

  • McCrory, P., Meeuwisse, W. H., Aubry, M., Cantu, R. C., Dvorak, J., Echemendia, R. J., Engebretsen, L., Johnston, K. M., Kutcher, J. S., Raftery, M., Sills, A., Benson, B. W., Davis, G. A., Ellenbogen, R., Guskiewicz, K. M., Herring, S. A., Iverson, G. L., Jordan, B. D., Kissick, J., McCrea, M., McIntosh, A. S., Maddocks, D. L., Makdissi, M., Purcell, L., Putukian, M., Schneider, K., Tator, C. H., & Turner, M. (2013). Consensus statement on concussion in sport—the 4th International Conference on Concussion in Sport held in Zurich, November 2012. PM R5(4). https://doi.org/10.1016/j.pmrj.2013.02.012.

  • Meier, T. B., Bergamino, M., Bellgowan, P. S. F., Teague, T. K., Ling, J. M., Jeromin, A., & Mayer, A. R. (2016). Longitudinal assessment of white matter abnormalities following sports‐related concussion. Human Brain Mapping, 37(2). https://doi.org/10.1002/hbm.23072.

  • Meier, T. B., Bellgowan, P. S., & Mayer, A. R. (2017). Longitudinal assessment of local and global functional connectivity following sports-related concussion. Brain Imaging and Behavior11(1). https://doi.org/10.1007/s11682-016-9520-y.

  • Meier, T. B., Giraldo-Chica, M., Espana, L. Y., Mayer, A. R., Harezlak, J., Nencka, A. S., Wang, Y., Koch, K. M., Wu, Y.-C., Saykin, A. J., Giza, C. C., Goldman, J., DiFiori, J. P., Guskiewicz, K. M., Mihalik, J. P., Brooks, A., Broglio, S. P., McAllister, T., & McCrea, M. A. (2020). Resting-state fMRI metrics in acute sport-related concussion and their association with clinical recovery: A study from the NCAA-DOD CARE consortium. Journal of Neurotrauma37(1). https://doi.org/10.1089/neu.2019.6471.

  • Morelli, N., Johnson, N. F., Kaiser, K., Andreatta, R. D., Heebner, N. R., & Hoch, M. C. (2021). Resting state functional connectivity responses post-mild traumatic brain injury: A systematic review. Brain Inj35(11). https://doi.org/10.1080/02699052.2021.1972339.

  • Murdaugh, D. L., King, T. Z., Sun, B., Jones, R. A., Ono, K. E., Reisner, A., & Burns, T. G. (2018). Longitudinal changes in resting state connectivity and white matter integrity in adolescents with sports-related concussion. Journal of the International Neuropsychological Society, 24(8), 781–792. https://doi.org/10.1017/S1355617718000413

    Article  PubMed  Google Scholar 

  • Murugavel, M., Cubon, V., Putukian, M., Echemendia, R., Cabrera, J., Osherson, D., & Dettwiler, A. (2014). A longitudinal diffusion tensor imaging study assessing white matter fiber tracts after sports-related concussion. Journal of Neurotrauma, 31(22). https://doi.org/10.1089/neu.2014.3368.

  • Mustafi, S. M., Harezlak, J., Koch, K. M., Nencka, A. S., Meier, T. B., West, J. D., Giza, C. C., DiFiori, J. P., Guskiewicz, K. M., Mihalik, J. P., LaConte, S. M., Duma, S. M., Broglio, S. P., Saykin, A. J., McCrea, M., McAllister, T. W., & Wu, Y. C. (2018). Acute white-matter abnormalities in sports-related concussion: A diffusion tensor imaging study from the NCAA-DoD CARE Consortium. Journal of Neurotrauma, 35(22). https://doi.org/10.1089/neu.2017.5158.

  • Ning, L., Bonet-Carne, E., Grussu, F., Sepehrband, F., Kaden, E., Veraart, J., Blumberg, S. B., Khoo, C. S., Palombo, M., Kokkinos, I., Alexander, D. C., Coll-Font, J., Scherrer, B., Warfield, S. K., Karayumak, S. C., Rathi, Y., Koppers, S., Weninger, L., Ebert, J., Merhof, D., Moyer, D., Pietsch, M., Christiaens, D., Teixeira, R. A. G., Tournier, J.-D., Schilling, K. G., Huo, Y., Nath, V., Hansen, C., Blaber, J., Landman, B. A., Zhylka, A., Pluim, J. P. W., Parker, G., Rudrapatna, U., Evans, J., Charron, C., Jones, D. K., & Tax, C. M. (2020). Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results. Neuroimage221. https://doi.org/10.1016/j.neuroimage.2020.117128.

  • Pierpaoli, C., Walker, L., Irfanoglu, M. O., Barnett, A., Basser, P., Chang, L. C., Koay, C., Pajevic, S., Rohde, G., Sarlls, J., & Wu, M. (2010). TORTOISE: An integrated software package for processing of diffusion MRI data. Presented at the ISMRM 18th annual meeting.

  • Piland, S. G., Ferrara, M. S., Macciocchi, S. N., Broglio, S. P., & Gould, T. E. (2010). Investigation of baseline self-report concussion symptom scores. Journal of Athletic Training45(3). https://doi.org/10.4085/1062-6050-45.3.273.

  • Ptak, T., Sheridan, R. L., Rhea, J. T., Gervasini, A. A., Yun, J. H., Curran, M. A., Borszuk, P., Petrovick, L., & Novelline, R. A. (2003). Cerebral fractional anisotropy score in trauma patients: A new indicator of white matter injury after trauma. AJR American Journal of Roentgenol181(5). https://doi.org/10.2214/ajr.181.5.1811401.

  • Reuter, M., Rosas, H. D., & Fischl, B. (2010). Highly accurate inverse consistent registration: A robust approach. Neuroimage53(4). https://doi.org/10.1016/j.neuroimage.2010.07.020.

  • Schatz, P., Pardini, J. E., Lovell, M. R., Collins, M. W., & Podell, K. (2006). Sensitivity and specificity of the ImPACT Test Battery for concussion in athletes. Archives of Clinical Neuropsychology21(1). https://doi.org/10.1016/j.acn.2005.08.001.

  • Schneider, K. J., Leddy, J. J., Guskiewicz, K. M., Seifert, T., McCrea, M., Silverberg, N. D., Feddermann-Demont, N., Iverson, G. L., Hayden, A., & Makdissi, M. (2017). Rest and treatment/rehabilitation following sport-related concussion: A systematic review. British Journal of Sports Medicine51(12). https://doi.org/10.1136/bjsports-2016-097475.

  • Ségonne, F., Dale, A. M., Busa, E., Glessner, M., Salat, D., Hahn, H. K., & Fischl, B. (2004). A hybrid approach to the skull stripping problem in MRI. Neuroimage22(3). https://doi.org/10.1016/j.neuroimage.2004.03.032.

  • Ségonne, F., Pacheco, J., & Fischl, B. (2007). Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Transactions on Medical Imaging26(4). https://doi.org/10.1109/tmi.2006.887364.

  • Shafi, R., Crawley, A. P., Tartaglia, M. C., Tator, C. H., Green, R. E., Mikulis, D. J., & Colantonio, A. (2020). Sex-specific differences in resting-state functional connectivity of large-scale networks in postconcussion syndrome. Scientific Reports10(1). https://doi.org/10.1038/s41598-020-77137-4.

  • Shen, X., Tokoglu, F., Papademetris, X., & Constable, R. T. (2013). Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. Neuroimage82. https://doi.org/10.1016/j.neuroimage.2013.05.081.

  • Shi, J., Teng, J., Du, X., & Li, N. (2021). Multi-modal analysis of resting-state fMRI data in mTBI patients and association with neuropsychological outcomes. Frontiers in Neurology, 12https://doi.org/10.3389/fneur.2021.639760.

  • Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging17(1). https://doi.org/10.1109/42.668698.

  • Slobounov, S. M., Gay, M., Zhang, K., Johnson, B., Pennell, D., Sebastianelli, W., Horovitz, S., & Hallett, M. (2011). Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. Neuroimage55(4). https://doi.org/10.1016/j.neuroimage.2011.01.024.

  • Tamez-Peña, J., Rosella, P., Totterman, S., Schreyer, E., Gonzalez, P., Venkataraman, A., & Meyers, S. P. (2022). Post-concussive mTBI in Student Athletes: MRI Features and Machine Learning. Frontiers in Neurology, 2351. https://doi.org/10.3389/fneur.2021.734329.

  • Tayebi, M., Holdsworth, S. J., Champagne, A. A., Cook, D. J., Nielsen, P., Lee, T. R., Wang, A., Fernandez, J., & Shim, V. (2021). The role of diffusion tensor imaging in characterizing injury patterns on athletes with concussion and subconcussive injury: A systematic review. Brain Inj, 35(6). https://doi.org/10.1080/02699052.2021.1895313.

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B Statistical Methodology58(1). https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.

  • Torbati, M. E., Minhas, D. S., Ahmad, G., O’Connor, E. E., Muschelli, J., Laymon, C. M., Yang, Z., Cohen, A. D., Aizenstein, H. J., Klunk, W. E., Christian, B. T., Hwang S. J., Crainiceanu, C. M., & Tudorascu, D. L. (2021). A multi-scanner neuroimaging data harmonization using RAVEL and ComBat. Neuroimage, 245. https://doi.org/10.1016/j.neuroimage.2021.118703.

  • Van Den Heuvel, M. P., & Pol, H. E. H. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology20(8). https://doi.org/10.1016/j.euroneuro.2010.03.008.

  • van der Horn, H. J., Liemburg, E. J., Scheenen, M. E., de Koning, M. E., Marsman, J. B. C., Spikman, J. M., & van der Naalt, J. (2016). Brain network dysregulation, emotion, and complaints after mild traumatic brain injury. Human Brain Mapping37(4). https://doi.org/10.1002/hbm.23126.

  • Van Dijk, K. R., Hedden, T., Venkataraman, A., Evans, K. C., Lazar, S. W., & Buckner, R. L. (2010). Intrinsic functional connectivity as a tool for human connectomics: Theory, properties, and optimization. Journal of Neurophysiology, 103(1). https://doi.org/10.1152/jn.00783.2009.

  • Van Horn, J. D., & Toga, A. W. (2009). Multi-site neuroimaging trials. Current Opinion in Neurology22(4). https://doi.org/10.1097/wco.0b013e32832d92de.

  • Van Kampen, D. A., Lovell, M. R., Pardini, J. E., Collins, M. W., & Fu, F. H. (2006). The “value added” of neurocognitive testing after sports-related concussion. American Journal of Sports Medicine34(10). https://doi.org/10.1177/0363546506288677.

  • Vanderploeg, R. D., Curtiss, G., & Belanger, H. G. (2005). Long-term neuropsychological outcomes following mild traumatic brain injury. Journal of the International Neuropsychological Society11(3). 10.10170S1355617705050289.

  • Vergara, V. M., Mayer, A. R., Damaraju, E., Kiehl, K. A., & Calhoun, V., (2017). Detection of mild traumatic brain injury by machine learning classification using resting state functional network connectivity and fractional anisotropy. Journal of Neurotrauma. 34(5). https://doi.org/10.1089/neu.2016.4526.

  • Whittaker, R., Kemp, S., & House, A. (2007). Illness perceptions and outcome in mild head injury: A longitudinal study. Journal of Neurology, Neurosurgery, and Psychiatry78(6). https://doi.org/10.1136/jnnp.2006.101105.

  • Wu, Y. C., Harezlak, J., Elsaid, N. M., Lin, Z., Wen, Q., Mustafi, S. M., Riggen, L. D., Koch, K. M., Nencka, A. S., Meier, T. B., Mayer, A. R., Wang, Y., Giza, C. C., DiFiori, J. P., Guskiewicz, K. M., Mihalik, J. P., LaConte, S. M., Duma, S. M., Broglio, S. P., … McAllister, T. W. (2020). Longitudinal white-matter abnormalities in sports-related concussion: A diffusion MRI study. Neurology, 95(7), e781–e792. https://doi.org/10.1212/WNL.0000000000009930

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong, K. L., Zhang, J. N., Zhang, Y. L., Zhang, Y., Chen, H., & Qiu, M. G. (2016). Brain functional connectivity and cognition in mild traumatic brain injury. Neuroradiology58(7). https://doi.org/10.1007/s00234-016-1675-0.

  • Yendiki, A., Panneck, P., Srinivasan, P., Stevens, A., Zöllei, L., Augustinack, J., Wang, R., Salat, D., Ehrlich, S., Behrens, T., Jbabdi, S., Gollub, R., & Fischl, B. (2011). Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Frontiers in Neuroinformatics, 5. https://doi.org/10.3389/fninf.2011.00023.

  • Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. Neuroimage22(1). https://doi.org/10.1016/j.neuroimage.2003.12.030.

  • Zhan, J., Gao, L., Zhou, F., Kuang, H., Zhao, J., Wang, S., He, L., Zeng, X., & Gong, H. (2015). Decreased regional homogeneity in patients with acute mild traumatic brain injury: A resting-state fMRI study. The Journal of Nervous and Mental Disease203(10). https://doi.org/10.1097/nmd.0000000000000368.

  • Zhan, J., Gao, L., Zhou, F., Bai, L., Kuang, H., He, L., ... & Gong, H. (2016). Amplitude of low-frequency fluctuations in multiple-frequency bands in acute mild traumatic brain injury. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00027.

  • Zhu, D. C., Covassin, T., Nogle, S., Doyle, S., Russell, D., Pearson, R. L., Monroe, J., Liszewski, C. M., DeMarco, J. K., & Kaufman, D. I. (2015). A potential biomarker in sports-related concussion: Brain functional connectivity alteration of the default-mode network measured with longitudinal resting-state fMRI over thirty days. Journal of Neurotrauma32(5). https://doi.org/10.1089/neu.2014.3413.

Download references

Acknowledgements

Many thanks to Drs. Peter Molfese, Michael Stevens, Fumiko Hoeft, and Deborah Fein for their input and guidance.

Funding

This study was funded in part by a contract to BrainScope Company Inc. from the U.S. Navy (Naval Health Research Center), contract #W911QY-14-C-0098, and in part by a University of Connecticut Institute for the Brain and Cognitive Sciences – Brain Imaging Research Center (IBACS-BIRC) Research Assistantship in Neuroimaging (IBRAiN).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions included conception and study design (SY and DJC), data collection and management (SES-M, ASL, KC, and RH), data analysis (MTL), interpretation of results (MTL, DJC, C-MC), and preparation of the original manuscript (MTL). All authors were involved in manuscript revising, approved the final version of this manuscript, and agree to be accountable for the integrity and accuracy of all aspects of the work.

Corresponding author

Correspondence to Monica T. Ly.

Ethics declarations

Ethics approval

All study procedures were approved by each site’s (University of Connecticut and University of South Carolina) respective Institutional Review Board.

Consent to participate

All participants provided written informed consent. Concussed athletes provided informed consent prior to injury.

Consent for publication

All participants acknowledged as part of informed consent that data collected from this study, de-identified, may be used to disseminate research findings such as through publication.

Conflicts of interest

S. Yeargin and D. J. Casa received a grant from BrainScope to conduct data collection, a subset of which was used for this study. S. E. Scarneo-Miller, K. Coleman, and R. Hirschhorn received funding from said grant from BrainScope through research assistantships. S. E. Scarneo-Miller also serves as an expert witness on legal cases related to sudden death in sport. M. T. Ly, A. S. Lepley, and C.-M. Chen have no competing interests to disclose.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Navy position, policy or decision.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 78.2 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ly, M.T., Scarneo-Miller, S.E., Lepley, A.S. et al. Combining MRI and cognitive evaluation to classify concussion in university athletes. Brain Imaging and Behavior 16, 2175–2187 (2022). https://doi.org/10.1007/s11682-022-00687-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-022-00687-w

Keywords

Navigation