Skip to main content
Log in

High-Temperature Interactions Between Titanium Alloys and Strontium Zirconate Refractories

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

We investigated interactions between Ti6Al4V alloys and strontium zirconate (SrZrO3) ceramic to assess its potential as a refractory mold material in investment casting. We developed a robust yet simple procedure to examine both the liquid–solid and solid–solid interactions using pellets in drop casting and diffusion couple methods. Reaction layers were characterized using optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and x-ray diffraction (XRD). The results were compared to alumina (Al2O3) which is still a common refractory ceramic for molds in investment casting. Our findings indicate that Ti6Al4V surfaces in contact with SrZrO3 had no apparent changes in surface chemistry nor microstructure. On the other hand, Ti6Al4V surfaces in contact with Al2O3 developed γ-TiAl and α2-Ti3Al intermetallics with thicknesses of ~ 100 μm in diffusion couples and ~ 10 μm in drop-casting experiments. Nanoindentation results showed that the surface of Ti6Al4V in contact with Al2O3 was significantly harder compared to SrZrO3, confirming our conclusion. Given the time and costs associated with mechanical and chemical removal of reaction layers on Ti6Al4V castings, SrZrO3 can be a better choice for a mold material in the investment casting of titanium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. I. Gurrappa, Characterization of Titanium Alloy Ti-6Al-4V for Chemical, Marine and Industrial Applications, Mater. Charact., 2003, 51(2), p 131–139. https://doi.org/10.1016/j.matchar.2003.10.006

    Article  CAS  Google Scholar 

  2. R.R. Boyer and R.D. Briggs, The Use of β Titanium Alloys in the Aerospace Industry, J. Mater. Eng. Perform., 2005, 14(6), p 681–685. https://doi.org/10.1361/105994905X75448

    Article  CAS  Google Scholar 

  3. J.C. Fanning, Military Applications for β Titanium Alloys, J. Mater. Eng. Perform., 2005, 14(6), p 686–690. https://doi.org/10.1361/105994905X75457

    Article  CAS  Google Scholar 

  4. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review, Prog Mater Sci, 2009, 54(3), p 397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  CAS  Google Scholar 

  5. J.T. Philip, J. Mathew, and B. Kuriachen, Tribology of Ti6Al4V: A Review, Friction, 2019, 7(6), p 497–536. https://doi.org/10.1007/s40544-019-0338-7

    Article  CAS  Google Scholar 

  6. P. Singh, H. Pungotra, and N.S. Kalsi, On the Characteristics of Titanium Alloys for the Aircraft Applications, Mater. Today Proc., 2017, 4(8), p 8971-8982. https://doi.org/10.1016/j.matpr.2017.07.249

    Article  CAS  Google Scholar 

  7. C. Cui, B. Hu, L. Zhao, and S. Liu, Titanium Alloy Production Technology, Market Prospects and Industry Development, Mater. Des., 2011, 32(3), p 1684–1691. https://doi.org/10.1016/j.matdes.2010.09.011

    Article  CAS  Google Scholar 

  8. R.S. Uwanyuze, J.E. Kanyo, S.F. Myrick, and S. Schafföner, A Review on Alpha Case Formation and Modeling of Mass Transfer During Investment Casting of Titanium Alloys, J. Alloys Compd., 2021, 865, p 158558. https://doi.org/10.1016/j.jallcom.2020.158558

    Article  CAS  Google Scholar 

  9. X. Chamorro, N. Herrero-Dorca, P. Rodr’iguez, U. Andr’es, and Z. Azpilgain, Alpha-Case Formation in Ti-6Al-4V Investment Casting Using ZrSiO4 and Al2O3 Moulds, J. Mater. Process. Technol., 2017, 243, p 75–81. https://doi.org/10.1016/j.jmatprotec.2016.12.007

    Article  CAS  Google Scholar 

  10. G.L. Yu, N. Li, Y.S. Li, and Y.N. Wang, The Effects of Different Types of Investments on the Alpha-Case Layer of Titanium Castings, J. Prosthet. Dent., 2007, 97(3), p 157–164. https://doi.org/10.1016/j.prosdent.2007.01.005

    Article  CAS  Google Scholar 

  11. S.-Y. Sung and Y.-J. Kim, Alpha-Case Formation Mechanism on Titanium Investment Castings, Mater. Sci. Eng. A, 2005, 405(1-2), p 173–177. https://doi.org/10.1016/j.msea.2005.05.092

    Article  CAS  Google Scholar 

  12. R.S. Uwanyuze, S.P. Alpay, S. Schafföner, and S. Sahoo, A First Principles Analysis of Oxidation in Titanium Alloys with Aluminum and Vanadium, Surf. Sci., 2022, 719, p 122026. https://doi.org/10.1016/j.susc.2022.122026

    Article  CAS  Google Scholar 

  13. S. Sahoo, S.P. Alpay, and R.J. Hebert, Surface Phase Diagrams of Titanium in Oxygen, Nitrogen and Hydrogen Environments: A First Principles Analysis, Surf. Sci., 2018, 677, p 18–25. https://doi.org/10.1016/j.susc.2018.05.007

    Article  CAS  Google Scholar 

  14. S.K. Nayak, C.J. Hung, V. Sharma, S.P. Alpay, A.M. Dongare, W.J. Brindley, and R.J. Hebert, Insight into Point Defects and Impurities in Titanium from First Principles, NPJ Comput. Mater., 2018 https://doi.org/10.1038/s41524-018-0068-9

    Article  Google Scholar 

  15. S.-Y. Sung and Y.-J. Kim, Influence of Al Contents on Alpha-Case Formation of Ti-xAl Alloys, J. Alloys Compd., 2006, 415(1-2), p 93–98. https://doi.org/10.1016/j.jallcom.2005.07.051

    Article  CAS  Google Scholar 

  16. V. Deshmukh, R. Kadam, and S.S. Joshi, Removal of Alpha Case on Titanium Alloy Surfaces Using Chemical Milling, Mach. Sci. Technol., 2017, 21(2), p 257–278. https://doi.org/10.1080/10910344.2017.1284558

    Article  CAS  Google Scholar 

  17. L. Huang, P. Kinnell, and P. Shipway, Parametric Effects on Grit Embedment and Surface Morphology in an Innovative Hybrid Waterjet Cleaning Process for Alpha Case Removal from Titanium Alloys, Procedia CIRP, 2013, 6, p 594–599. https://doi.org/10.1016/j.procir.2013.03.077

    Article  Google Scholar 

  18. L. Yue, Z. Wang, and L. Li, Material Morphological Characteristics in Laser Ablation of Alpha Case from Titanium Alloy, Appl. Surf. Sci., 2012, 258(20), p 8065–8071. https://doi.org/10.1016/j.apsusc.2012.04.173

    Article  CAS  Google Scholar 

  19. S. Pattnaik, D.B. Karunakar, and P. Jha, Developments in Investment Casting Process: A Review, J. Mater. Process. Technol., 2012, 212(11), p 2332–2348. https://doi.org/10.1016/j.jmatprotec.2012.06.003

    Article  CAS  Google Scholar 

  20. L. Nastac, M. Gungor, I. Ucok, K. Klug, and W.T. Tack, Advances in Investment Casting of Ti-6Al-4V: A Review, Int. J. Cast Met. Res., 2006, 19(2), p 73–93. https://doi.org/10.1179/136404605225023225

    Article  CAS  Google Scholar 

  21. J.E. Kanyo, S. Schafföner, R.S. Uwanyuze, and K.S. Leary, An Overview of Ceramic Molds for Investment Casting of Nickel Superalloys, J. Eur. Ceram. Soc., 2020, 40(15), p 4955–4973. https://doi.org/10.1016/j.jeurceramsoc.2020.07.013

    Article  CAS  Google Scholar 

  22. Y. Cui, X. Tang, M. Gao, L. Ma, and Z. Hu, Interactions Between TiAl Alloy and Different Oxide Moulds under High-Temperature and Long-Time Condition, High Temp. Mater. Process., 2013, 32(3), p 295–302. https://doi.org/10.1515/htmp-2012-0120

    Article  CAS  Google Scholar 

  23. J. Kuang, R. Harding, and J. Campbell, Investigation into Refractories as Crucible and Mould Materials for Melting and Casting Gamma-TiAl Alloys, Mater. Sci. Technol., 2000, 16(9), p 1007–1016. https://doi.org/10.1179/026708300101508964

    Article  CAS  Google Scholar 

  24. R. Gaddam, M.-L. Antti, and R. Pederson, Influence of Alpha-Case Layer on the Low Cycle Fatigue Properties of Ti-6Al-2Sn-4Zr-2Mo Alloy, Mater. Sci. Eng. A, 2014, 599, p 51–56. https://doi.org/10.1016/j.msea.2014.01.059

    Article  CAS  Google Scholar 

  25. Z. Abdallah, K. Perkins, and S. Williams, Alpha-Case Kinetics and Surface Crack Growth in the High-Temperature Alloy TIMETAL 834 Under Creep Conditions, Metall. Mater. Trans. A, 2012, 43(12), p 4647–4654. https://doi.org/10.1007/s11661-012-1285-3

    Article  CAS  Google Scholar 

  26. Y. Venkat, K.R. Choudary, D. Chatterjee, D.K. Das, A.K. Pandey, and S. Singh, Development of Mullite-Alumina Ceramic Shells for Precision Investment Casting of Single-Crystal High-Pressure Turbine Blades, Ceram. Int., 2022, 48(19), p 28199–28206. https://doi.org/10.1016/j.ceramint.2022.06.124

    Article  CAS  Google Scholar 

  27. S. Chen, D. Sun, C. Wang, S. Wen, J. Wu, C. Yan, Y. Shi, C. Chen, and Z. Ren, Alumina-Based Ceramic Mold with Integral Core and Shell for Hollow Turbine Blades Fabricated by Laser Powder Bed Fusion, Addit. Manuf, 2022, 58, p 103046. https://doi.org/10.1016/j.addma.2022.103046

    Article  CAS  Google Scholar 

  28. B.-J. Choi, S. Lee, and Y.-J. Kim, Alpha-Case Reduction Mechanism of Titanium Powder-Added Investment Molds for Titanium Casting, J. Mater. Eng. Perform., 2014, 23(4), p 1415–1423. https://doi.org/10.1007/s11665-013-0859-6

    Article  CAS  Google Scholar 

  29. T. Tetsui, T. Kobayashi, T. Ueno, and H. Harada, Consideration of the Influence of Contamination from Oxide Crucibles on TiAl Cast Material, and the Possibility of Achieving low-Purity TiAl Precision Cast Turbine Wheels, Intermetallics, 2012, 31, p 274–281. https://doi.org/10.1016/j.intermet.2012.07.019

    Article  CAS  Google Scholar 

  30. R.J. Cui, H.R. Zhang, X.X. Tang, L.M. Ma, H. Zhang, and S.K. Gong, Interactions Between Gamma-TiAl Melt and Y2O3 Ceramic Material During Directional Solidification Process, Trans. Nonferr. Met. Soc. China, 2011, 21(11), p 2415–2420. https://doi.org/10.1016/S1003-6326(11)61029-7

    Article  CAS  Google Scholar 

  31. Q. Jia, Y. Cui, and R. Yang, A Study of Two Refractories as Mould Materials for Investment Casting TiAl Based Alloys, J. Mater. Sci., 2006, 41(10), p 3045–3049. https://doi.org/10.1007/s10853-006-6785-3

    Article  CAS  Google Scholar 

  32. S.K. Kim, T.K. Kim, M.G. Kim, T.W. Hong, and Y.J. Kim, Investment Casting of Titanium Alloys with CaO Crucible and CaZrO3 Mold, Lightw. Alloys Aerosp. Appl., 2001 https://doi.org/10.1002/9781118787922.ch23

    Article  Google Scholar 

  33. D. Eatesami, M.M. Hadavi, and A. Habibollahzade, Melting of γ-TiAl in the Alumina Crucible, Russ. J. Non-Ferr. Met., 2009, 50(4), p 363–367. https://doi.org/10.3103/S1067821209040105

    Article  Google Scholar 

  34. S.K. Sadrnezhad and S.B. Raz, Interaction Between Refractory Crucible Materials and the Melted NiTi Shape-Memory Alloy, Metall. Mater. Trans. B, 2005, 36(3), p 395–403. https://doi.org/10.1007/s11663-005-0068-2

    Article  Google Scholar 

  35. U.E. Klotz, C. Legner, F. Bulling, L. Freitag, C. Faßauer, S. Schafföner, and C.G. Aneziris, Investment Casting of Titanium Alloys with Calcium Zirconate Moulds and Crucibles, Int. J. Adv. Manuf. Technol., 2019, 103, p 1–11. https://doi.org/10.1007/s00170-019-03538-z

    Article  Google Scholar 

  36. S. Schafföner, M. Bach, C. Jahn, L. Freitag, and C.G. Aneziris, Advanced Refractories for Titanium Metallurgy Based on Calcium Zirconate with Improved Thermomechanical Properties, J. Eur. Ceram. Soc., 2019, 39(14), p 4394–4403. https://doi.org/10.1016/j.jeurceramsoc.2019.06.007

    Article  CAS  Google Scholar 

  37. G. Chen, B. Lan, F. Xiong, P. Gao, H. Zhang, X. Lu, and C. Li, Pilot-Scale Experimental Evaluation of Induction Melting of Ti-46Al-8Nb Alloy in the Fused BaZrO3 Crucible, Vacuum, 2019, 159, p 293–298. https://doi.org/10.1016/j.vacuum.2018.10.050

    Article  CAS  Google Scholar 

  38. B. Lan, G. Chen, Y. Xiao, Q. Feng, X. Lu, and C. Li, Phase and Microstructural Evolution of BaZrO3-CaZrO3 Refractory and its Interaction With Titanium Alloy Melt, Int. J. Appl. Ceram. Technol., 2020, 17(5), p 2193–2201. https://doi.org/10.1111/ijac.13541

    Article  CAS  Google Scholar 

  39. D.Z. Meng, G.Y. Chen, R.L. Zhang, and C.H. Li, Preparation of Y2O3-doped-SrZrO3 Refractory and Study on its Interface Reaction with Molten TiNi Alloys, Key Eng. Mater., 2018, 768, p 256–260. https://doi.org/10.4028/www.scientific.net/kem.768.256

    Article  Google Scholar 

  40. N. S. Jacobson, Thermodynamic properties of some metal oxide-zirconia systems, National Aeronautics and Space Administration, 1989

  41. R.A. De Souza, Oxygen Diffusion in SrTiO3 and Related Perovskite Oxides, Adv. Funct. Mater., 2015, 25(40), p 6326–6342. https://doi.org/10.1002/adfm.201500827

    Article  CAS  Google Scholar 

  42. W. Ma, D.E. Mack, R. Vaßen, and D. Stöver, Perovskite-Type Strontium Zirconate as a New Material for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2008, 91(8), p 2630–2635. https://doi.org/10.1111/j.1551-2916.2008.02472.x

    Article  CAS  Google Scholar 

  43. M. Zborowska, M. Grylicki, and J. Zborowski, The Preparation and Properties of Strontium Zirconate Ceramics for Channels of Open-Cycle MHD Generators, Ceramurg. Int., 1980, 6(3), p 99–102. https://doi.org/10.1016/0390-5519(80)90020-4

    Article  CAS  Google Scholar 

  44. A.B. Tuğrul, H.Ö. Toplan, B. Büyük, E. Demir, G. Sönmez, S. Kurt, and N. Toplan, Plasma-Sprayed Strontium Zirconate Coatings, Appl. Phys. A, 2021, 127(8), p 592. https://doi.org/10.1007/s00339-021-04736-x

    Article  CAS  Google Scholar 

  45. A. Pragatheeswaran, P.V. Ananthapadmanabhan, Y. Chakravarthy, S. Bhandari, T.K. Thiyagarajan, N. Tiwari, T.K. Saha, and K. Ramachandran, Plasma Spray Deposition and Characterization of Strontium Zirconate Coatings, Ceram. Int., 2014, 40(7), p 10441–10446. https://doi.org/10.1016/j.ceramint.2014.02.128

    Article  CAS  Google Scholar 

  46. P. Kaur and K. Singh, Structural, Thermal and Electrical Study of Copper-Doped Strontium Zirconate, Ionics, 2020, 26(12), p 6233–6244. https://doi.org/10.1007/s11581-020-03752-w

    Article  CAS  Google Scholar 

  47. J.E. Kanyo, R.S. Uwanyuze, J. Zhang, R.J. Hebert, S. Schafföner, and L. Frame, Solid-State Calcination and Synthesis of Homogeneous Strontium Zirconate by Slip Casting”, Solid State Sci., 2023, 142, p 107235. https://doi.org/10.1016/j.solidstatesciences.2023.107235

    Article  CAS  Google Scholar 

  48. S. Lee and Y.-J. Kim, Evaluation of the Alpha-Case with TiO2 in Mold for Titanium Investment Casting, Int. J. Met., 2017, 11(1), p 71–76. https://doi.org/10.1007/s40962-016-0093-8

    Article  Google Scholar 

  49. M. J. Donachie, Titanium: A Technical Guide, 2nd Edition. ASM International, 2000.

  50. F.H. Hayes, The Al-Ti-V (Aluminum-Titanium-Vanadium) System, J. Phase Equilibria, 1995, 16(2), p 163–176. https://doi.org/10.1007/BF02664854

    Article  CAS  Google Scholar 

  51. S.L. Semiatin, T.M. Brown, T.A. Goff, P.N. Fagin, R.E. Turner, J.M. Murry, D.R. Barker, J.D. Miller, and F. Zhang, Diffusion Coefficients for Modeling the Heat Treatment of Ti-6Al-4V, Metall. Mater. Trans. A, 2004, 35(9), p 3015–3018. https://doi.org/10.1007/s11661-004-0250-1

    Article  Google Scholar 

  52. V. Maurice, G. Despert, S. Zanna, P. Josso, M.-P. Bacos, and P. Marcus, XPS Study of the Initial Stages of Oxidation of α2-Ti3Al and γ-TiAl Intermetallic Alloys, Acta Mater., 2007, 55(10), p 3315–3325. https://doi.org/10.1016/j.actamat.2007.01.030

    Article  CAS  Google Scholar 

  53. B.-J. Lee, and N. Saunders, Thermodynamic Evaluation of the Ti-Al-O Ternary System, Int. J. Mater. Res., 1997, 88(2), p 152–161. https://doi.org/10.3139/ijmr-1997-0028

    Article  CAS  Google Scholar 

  54. M. Silva, A.S. Ramos, and S. Simões, Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers, Metals, 2021, 11(11), p 1728. https://doi.org/10.3390/met11111728

    Article  CAS  Google Scholar 

  55. A.M. Kliauga and M. Ferrante, Interface Compounds Formed During the diffusion Bonding of Al2O3 to Ti, J. Mater. Sci., 2000, 35(17), p 4243-4249. https://doi.org/10.1023/A:1004815830980

    Article  CAS  Google Scholar 

  56. J.L. Murray, The Ti−Zr (Titanium-Zirconium) System, Bull. Alloy Phase Diagr., 1981, 2(2), p 197–201. https://doi.org/10.1007/BF02881478

    Article  Google Scholar 

  57. A.A. Yaremchenko, S.G. Patrício, and J.R. Frade, Thermochemical Behavior and Transport Properties of Pr-Substituted SrTiO3 as Potential Solid Oxide Fuel Cell Anode, J. Power Sources, 2014, 245, p 557–569. https://doi.org/10.1016/j.jpowsour.2013.07.019

    Article  CAS  Google Scholar 

  58. R.O. Suzuki, Direct Reduction Processes for Titanium Oxide in Molten Salt, JOM, 2007, 59(1), p 68–71. https://doi.org/10.1007/s11837-007-0014-7

    Article  CAS  Google Scholar 

  59. M. Ye, J. Jia, Z. Wu, C. Qian, R. Chen, P.G. O’Brien, W. Sun, Y. Dong, and G.A. Ozin, Synthesis of BLACK TiOx Nanoparticles by Mg Reduction of TiO2 Nanocrystals and their Application for Solar Water Evaporation, Adv. Energy Mater., 2017, 7(4), p 1601811. https://doi.org/10.1002/aenm.201601811

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge support from the Air Force Research Laboratory, Materials and Manufacturing Directorate (AFRL/RXMS) via Contracts FA8650-18-C-5700 and FA8650-20-C-5206. The sample characterization presented herein were carried out using the equipment in the ThermoFisher Scientific Center for Advanced Microscopy and Materials Analysis (CAMMA), and UConn Tech Park. We also thank Seok-Woo Lee (University of Connecticut) and his group for their help with the nanoindentation experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pamir Alpay.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Distribution A. Approved for public release: distribution unlimited (AFRL-2023-1200); date approved 03-10-2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uwanyuze, R.S., Yavas, B., Zhang, J. et al. High-Temperature Interactions Between Titanium Alloys and Strontium Zirconate Refractories. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08597-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08597-8

Keywords

Navigation