Skip to main content
Log in

The earliest Foraminifera from southern Shaanxi, China

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Vase-shaped microfossils (VSMs) described herein mainly occur as isolated individuals in thin bedded siltstone and silty carbonate of the Gaojiashan Member of the upper Ediacaran Dengying Formation (ca. 551–541 Ma). Although these fossils are abundant, chained tests or other types of colonial aggregates have not been observed. Specimens in the siltstones can easily be isolated from the host rocks by ultrasonic vibrators. Compared with the co-occurring fossils Gaojiashania and Conotubus, VSMs are rarely pyritized, yet they are always three-dimensionally persevered with little deformation, suggesting that their tests were sturdy and possibly mineralized. Petrological observation and elemental mapping reveal two types of tests that are respectively calcareous and siliceous in composition. Calcareous tests typically consist of two to three crypto-crystal laminae, somewhat resembling bilamellar walls of foraminifers. Siliceous tests consist of fine-grained particles agglutinated with siliceous cement, similar to agglutinated walls of foraminifers. The Gaojiashan VSMs are broadly similar, at least in gross morphology, to the testate amoebae-like VSMs, but their relative large sizes (600–2400 μm) and possibly mineralized (rather than organic) tests argue against this comparison. They also show some similarities to other protozoans, especially tintinnids. However, tintinnids have robust pesudochitinous loricae consisting of both secreted and agglutinated materials. Moreover, tintinnid loricae differ in shape from the Gaojiashan VSM tests in having a constricted aboral end (sometimes with a caudal appendix) and a flaring oral opening. If the Gaojiashan VSMs are indeed related to foraminifers, they indicate that foraminifers were important players in late Ediacaran communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaucher C, Sprechermann P. Upper Vendian skeletal fauna of the Arroyo del Sodado Group, Uruguay. Beringeria, 1999, 23: 55–91

    Google Scholar 

  2. Culver S J. Early Cambrian foraminifera from West Africa. Science, 1991, 254: 689–691

    Article  Google Scholar 

  3. McIlroy D, Green O R, Brasier M D. Palaeobiology and evolution of the earliest agglutinated Foraminifera: Platysolenites, Spirosolenites and related forms. Lethaia, 2001, 34: 13–29

    Article  Google Scholar 

  4. Lipps J H, Rozanov A Y. The Late Precambrian-Cambrian agglutinated fossil Platysolenites. Palaeontol J, 1996, 10: 687–697

    Google Scholar 

  5. Knoll A H, Vidal G. Late Proterozoic vase-shaped microfossils from the Visingsö Beds, Sweden. Geol Föreningen Stockholm Förhandl, 1980, 102: 207–211

    Google Scholar 

  6. Porter S M, Knoll A H. Testate amoebae in the Neoproterozoic Era: Evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology, 2000, 26: 360–385

    Article  Google Scholar 

  7. Bloeser B, Schopf J W, Horodyski R J, et al. Chitinozoans from the Late Precambrian Chuar Group of the Grand Canyon, Arizona. Science, 1977, 195: 676–679

    Article  Google Scholar 

  8. Bloeser B. Melanocyrillium, a new genus of structurally complex Late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona. J Paleontol, 1985, 59: 741–765

    Google Scholar 

  9. Horodyski R J. A new occurrence of the vase-shaped fossil Melanocyrillium and new data on this relatively complex Late Precambrian fossil. Geol Soc Amer Abstr Programs, 1987, 19: 707

    Google Scholar 

  10. Horodyski R J. Paleontology of Proterozoic shales and mudstones: Examples from the Belt Supergroup, Chuar Group and Pahrump Group, western USA. In: Nagy B, Leventhal J S, Grant R F, eds. Metalliferous Black Shales and Related Ore Deposits. Precambrian Res, 1993, 61: 241–278

  11. Knoll A H, Calder S. Microbiotas of the late Precambrian Ryssö Formation, Nordaustlandet, Svalbard. Palaeontology, 1983, 26: 467–496

    Google Scholar 

  12. Porter S M, Meisterfeld R, Knoll A H. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: A classification guided by modern testate amoebae. J Paleontol, 2003, 77: 409–429

    Article  Google Scholar 

  13. Yin L M. Late Precambrian microfossils from Diaoyutai Formation, Eastern Liaoning, China. Paper for the 5th International Conference. Nanjing: Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 1980. 18

    Google Scholar 

  14. Zang W L, Walter M R. Late Proterozoic and Early Cambrian microfossils and biostratigraphy, northern Anhui and Jiangsu, centraleastern China. Precambrian Res, 1992, 57: 243–323

    Article  Google Scholar 

  15. Duan C H, Cao F. New discovery of vase-like fossils from Eastern Yangtze Gorges, Hubei. Period Tianjin Institute Geol Mineral Resources, 1989, (21): 130–147

  16. Wu X H, Wang S Y. Possible phosphatized protozoan fossils from the late Neoproterozoic Doushantuo phosphorites in Guizhou Province. Acta Micropalaentol Sin, 2004, 21: 194–198

    Google Scholar 

  17. Li Y, Guo J F, Zhang X L, et al. Vase-shaped microfossils from the Ediacaran Weng’an biota, Guizhou, South China. Gondwana Res, 2008, 14: 263–268

    Article  Google Scholar 

  18. Ren C Y, Liu L Q, Zhou Y H, et al. Vase-shaped Microfossils from Weng’an Biota. J Earth Sci Environment, 2008, 30: 249–252

    Google Scholar 

  19. Zhang L Y, Li Y. The Late Sinian vasiform microfossils of Ningqiang, Shaanxi Province. Period Xi’an Institute Geol Min Resources, 1991, (31): 77–86

  20. Zhang L Y. A new progress in research on vase-shaped microfossils from the Dengying Formation of Sinian in southern Shaanxi Province. Acta Geol Gansu, 1994, 3: 1–8

    Google Scholar 

  21. Xue Y S, Zhou C M, Tang T F. New material of animal fossils from the Upper Sinian of the Yangtze Region, southern China. Acta Palaeontol Sin, 2002, 41: 137–141

    Google Scholar 

  22. Duan C H, Cao F, Zhang L Y. Vase-shaped microfossils from top of the Dengying Formation in Xixiang, Shaanxi. Acta Micropalaeontol Sin, 1993, 10: 397–408

    Google Scholar 

  23. Cao F, Duan C H, Zhang L Y. The discovery and significance of the vase-shaped microfossils in Meishucunian stage in Ningqiang, Shaanxi. Geol Rev, 1995, 41: 355–362

    Google Scholar 

  24. Cao F. Study on the vase-shaped microfossils in China. Acta Micropalaeontol Sin, 1998, 15: 404–416

    Google Scholar 

  25. Zhang Z Y. Comments on the “Vase-shaped microfossils“ from the Doushantuo Formation of the eastern Yangtze Gorges. Acta Micropalaeontol Sin, 1994, 11: 369–371

    Google Scholar 

  26. Qian Y, Zhang S B. Small shelly fossils from the Xihaoping Member of the Dongying Formation in Fangxian county of Hubei Province and their stratigraphic significance. Acta Palaeontol Sin, 1983, 22: 82–94

    Google Scholar 

  27. Duan C H. Vase-like fossils of Precambrian in Hubei, Fangxian. Period Tianjin Institute Geol Mineral Resources, 1986, (13): 87–120

  28. Geng L Y, Zhang S B. Early Cambrian problematic fossils from Fangxian, Hubei, China. In: Stratigraphy and Paleontology of Systemic Boundaries in China. Precambrian-Cambrian Boundary (1). Nanjing: Nanjing University Publishing House, 1977. 523–536

    Google Scholar 

  29. Zhao Z Q, Xing Y S, Ding Q X, et al. The Sinian System of Hubei. Wuhan: China University of Geosciences Press, 1988. 1–205

    Google Scholar 

  30. Qian Y, Sun W G, He D G, et al. Restudy on “vase-shaped microfossils“ from the Lower Cambrian Xihaoping Member in south Shaanxi and west Hubei. Acta Micropalaeontol Sin, 2000, 17: 317–326

    Google Scholar 

  31. Zhang L Y. A discovery and preliminary study of the Late Sinian stage Gaojiashan Biota from Ningqiang county, Shaanxi. Bull Xi’an Institute Geol Mineral Res Chin Acad Geol Sci, 1986, 13: 67–88

    Google Scholar 

  32. Cai Y, Hua H, Xiao S, et al. Biostratinomy of the late Ediacaran pyritized Gaojiashan Lagerstätte from southern Shaanxi, South China: Importance of event deposits. Palaios, 2010, 25: 487–506

    Article  Google Scholar 

  33. Vénéc-Peyré M T, Jaeschke-boyer H. Application de la microsonde moléculaire à laser à Pétude du test de quelques Foraninifères cslcaires. Copt Rend Acad Sci Paris-Sér D, 1978, 287: 607–609

    Google Scholar 

  34. Milliken K L, Choh S J, Papazis P, et al. “Cherty” stringers in the Barnett Shale are agglutinated foraminifera. Sediment Geol, 2007, 198: 221–232

    Article  Google Scholar 

  35. Schieber J. Discovery of agglutinated benthic foraminifera in Devonian black shales and their relevance for the redox state of ancient seas. Palaeogeogr Palaeocl Palaeoecol, 2009, 271: 292–300

    Article  Google Scholar 

  36. Miller W III. Giant bathysiphon (Foraminiferida) from Cretaceous turbidites, Northern California. Lethaia, 1988, 21: 363–374

    Article  Google Scholar 

  37. Streng M, Babcock L E, Hollingsworth J S. Agglutinated protists from the Lower Cambrian Nevada. J Paleontol, 2005, 79: 1214–1218

    Article  Google Scholar 

  38. Hansen H J. Test structure and evolution in the Foraminifera. Lethaia, 1977, 122: 173–182

    Google Scholar 

  39. Pawlowski J, Holzmann M, Berney C. The evolution of early Foraminifera. Proc Natl Acad Sci, 2003, 100: 11494–11498

    Article  Google Scholar 

  40. Langer M R. Origin of foraminifera: Conflicting molecular and paleontological data? Mar Micropaleontol, 1999, 38: 1–5

    Article  Google Scholar 

  41. Flügel E. Microfacies of Carbonate Rocks—Analysis, Interpretation and Application. Berlin: Springer, 2004. 976

    Google Scholar 

  42. Marszalek D S. Calcisphere ultrastructure and skeletal aragonite from the alga Acetabularia antillana. J Sediment Petrol, 1975, 45: 266–271

    Google Scholar 

  43. Samtleben C, Munnecke A, Bickert T, et al. Shell construction, assemblage and species dependent effects on the C/O-isotopic composition of brachiopods—Examples from the Silurian of Gotland. Chem Geol, 2001, 175: 61–107

    Article  Google Scholar 

  44. Kazmierczak J. Volvocacean nature of some Paleozoic nonradiosphaerid calcispheres and parathuramminid “foraminifera”. Acta Paleontol Pol, 1976, 10: 73–85

    Google Scholar 

  45. Kazmierczak J, Ittekkot V, Degens E T. Biocalcification through time: Environmental challenge and cellular response. Paläontol Zeitschrift, 1985, 59: 15–33

    Google Scholar 

  46. Ausich W I, Bottjer D J. Sessile invertebrates. In: Briggs D E G, Crowther P R, eds. Palaeobiology II. Oxford: Blackwell, 2001. 384–386

    Chapter  Google Scholar 

  47. Clapham M E, Narbonne G M. Ediacaran epifaunal tiering. Geology, 2002, 30: 627–630

    Article  Google Scholar 

  48. Yuan X, Xiao S X, Parsley R L, et al. Towering sponges in an Early Cambrian Lagerstätte: Disparity between non-bilaterian and bilaterian epifaunal tiers during the Neoproterozoic-Cambrian transition. Geology, 2002, 30: 363–366

    Article  Google Scholar 

  49. Clapham M E, Narbonne G M, Gehling J G. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology, 2003, 29: 527–544

    Article  Google Scholar 

  50. Vermeij G J. Evolution and Escalation. Princeton: Princeton University Press, 1987

    Google Scholar 

  51. Bengtson S, Yue Z. Predatorial borings in late Precambrian mineralized exoskeletons. Science, 1992, 257: 367–369

    Article  Google Scholar 

  52. Hua H, Pratt B R, Zhang L Y. Borings in Cloudina shells: Complex predator-prey dynamics in the terminal Neoproterozoic. Palaios, 2003, 18: 454–459

    Article  Google Scholar 

  53. Van Cappellen P. Biomineralization and global biogeochemical cycles. Rev Mineral Geochem, 2003, 54: 357–381

    Article  Google Scholar 

  54. Westbroek P, Brown C W, Bleijswijk J V, et al. A model system approach to biological climate forcing: The example of Emiliania huxleyi. Global Planet Change, 1993, 8: 27–46

    Article  Google Scholar 

  55. Bengtson S, Conway M S. Early radiation of biomineralizing phyla. In: Lipps J H, Signor P W, eds. Origin and Early Evolution of Metazoa. New York: Plenum Press, 1992. 447–481

    Google Scholar 

  56. Bengtson S. Mineralized skeletons and early animal evolution. In: Briggs D E G, ed. Evolving Form and Function: Fossils and Development. New Haven, CT: Yale Peabody Museum Publications, 2005. 101–124

    Google Scholar 

  57. Grant S W F. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. Am J Sci, 1990, 290-A: 261–294

    Google Scholar 

  58. Amthor J E, Grotzinger J P, Schröder S, et al. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 2003, 31: 431–434

    Article  Google Scholar 

  59. Hua H, Chen Z, Yuan X, et al. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology, 2005, 33: 277–280

    Article  Google Scholar 

  60. Hua H, Chen Z, Yuan X. The advent of mineralized skeletons in Neoproterozoic Metazoa: New fossil evidence from the Gaojiashan Fauna. Geol J, 2007, 42: 263–279

    Article  Google Scholar 

  61. Bowring S A, Grotzinger J P, Condon D J, et al. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Am J Sci, 2007, 307: 1097–1145

    Article  Google Scholar 

  62. Francis A M, Cohen P A, Dudás F Ö, et al. Early Neoproterozoic scale microfossils in the Lower Tindir Group of Alaska and the Yukon Territory. Geology, 2010, 38: 143–146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Hua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, H., Chen, Z., Yuan, X. et al. The earliest Foraminifera from southern Shaanxi, China. Sci. China Earth Sci. 53, 1756–1764 (2010). https://doi.org/10.1007/s11430-010-4085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-010-4085-x

Keywords

Navigation