Skip to main content
Log in

The Dual-Reciprocity Boundary Element Analysis for Hydraulically Fractured Shale Gas Reservoirs Considering Diffusion and Sorption Kinetics

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This work presents a new application of boundary element method (BEM) to model fluid transport in unconventional shale gas reservoirs with discrete hydraulic fractures considering diffusion, sorption kinetics and sorbed-phase surface diffusion. The fluid transport model consists of two governing partial differential equations (PDEs) written in terms of effective diffusivities for free and sorbed gases, respectively. Boundary integral formulations are analytically derived using the fundamental solution of the Laplace equation for the governing PDEs and Green’s second identity. The domain integrals arising due to the time-dependent function and nonlinear terms are transformed into boundary integrals employing the dual-reciprocity method. This transformation retains the domain-integral-free, boundary-integral-only character of standard BEM approaches. In the proposed solution, the free- and sorbed-gas flow in the shale matrix is solved simultaneously after coupling the fracture flow equation of free gas. Well production performance under the effect of relaxation phenomenon due to delayed responses of sorbed gas under nonequilibrium sorption condition is rigorously captured by imposing the zero-flux condition at fracture–matrix interface for the sorbed-gas transport equation. The validity of proposed solution is verified using several case studies through comparison against a commercial finite-element numerical simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

modified from Zhang and Ayala 2020)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A :

Area of the simulated domain, m2

C :

Concentration of the bulk phase gas, kg/m3

C s :

Concentration of the sorbed phase, kg/m3

c g :

Real gas compressibility, 1/Pa

D eff :

Effective diffusion coefficient of bulk phase, cm2/s

D k :

Knudsen diffusion coefficient, cm2/s

D s :

Surface diffusion coefficient, cm2/s

G :

Green’s function

h :

Thickness, m

k m :

Matrix absolute permeability, m2

k f :

Fracture absolute permeability, m2

k r :

Reverse desorption rate constant, 1/s

K :

Equilibrium constant of adsorption, dimensionless

L :

Number of internal nodes

l :

Fracture flow direction

N b :

Number of boundary element

N f :

Number of fracture nodes

n :

Normal vector

p :

Pressure, Pa

q :

Normal flux at boundary element, kg/(m2·s)

q f :

Source strength of fracture element, kg/(m3·s)

t :

Time, s

w f :

Fracture width, m

x :

Coordinate in X direction

y :

Coordinate in Y direction

ini:

Initial condition

ref:

Reference condition

D :

Dimensionless

µ g :

Free-gas viscosity, Pa.s

ρ g :

Gas density at reservoir conditions, g/cm3

ϕ :

Porosity, fraction

ζ:

Dimensionless base point coordinate in X direction

η :

Dimensionless base point coordinate in Y direction

Γ :

Fracture domain

λ :

Constant in boundary integral equation that relates to base point position with respect to boundary

δ :

Dirac delta function

θ m :

Weighted parameter, fraction

θ q :

Weighted parameter, fraction

References

  • Akkutlu, I.Y., Efendiev, Y., Savatorova, V.: Multi-scale asymptotic analysis of gas transport in shale matrix. Transp. Porous Media 107, 235–260 (2015)

    Article  Google Scholar 

  • Alnoaimi, K.R., Kovscek, A.R.: Influence of microcracks on flow and storage capacities of gas shales at core scale. Transp. Porous Media 127, 53–84 (2019)

    Article  Google Scholar 

  • Alvarado, V., Scriven, L.E., Davis, H.T.: Stochastic-perturbation analysis of a one-dimensional dispersion-reaction equation: effects of spatially-varying reaction rates. Transp. Porous Media 32, 139–161 (1998)

    Article  Google Scholar 

  • Andersen, P.A.: A semi-analytical solution for shale gas production from compressible matrix including scaling of gas recovery. J. Nat. Gas Sci. Eng. 95, 104227 (2021)

    Article  Google Scholar 

  • Azom, P.N., Farzam J.: Dual-continuum modeling of shale and tight fas reservoirs. Paper presented at the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA (2012)

  • Banerjee, P.K.: The Boundary Element Methods in Engineering, 2nd edn. McGraw-Hill, London, etc. (1994)

    Google Scholar 

  • Berawala, D.S., Andersen, P.A.: Numerical investigation of Non-Darcy flow regime transitions in shale gas production. J. Pet. Sci. Eng. 190, 107114 (2020)

    Article  Google Scholar 

  • Chen, J.S., Ho, Y.C., Liang, C.P., Wang, S.W., Liu, C.W.: Semi-analytical model for coupled multispecies advective-dispersive transport subject to rate-limited sorption. J. Hydrol. 579, 124794 (2019)

    Article  Google Scholar 

  • Cheng, Y., Huang, Q., Eic, M., Balcom, B.J.: CO2 dynamic adsorption/desorption on Zeolite 5A studied by 13C magnetic Resonance Imaging. Langmuir 21, 4376–4381 (2005)

    Article  Google Scholar 

  • Civan, F.: Effective correlation of apparent gas permeability in tight porous media. Transp. Porous Media 82(2), 375–384 (2010). https://doi.org/10.1007/s11242-009-9432-z

    Article  Google Scholar 

  • Cronin, M., Emami-Meybodi, H., Johns, R.T.: Diffusion-dominated proxy model for solvent injection in ultratight oil reservoirs. SPE J. 24(02), 660–680 (2018). https://doi.org/10.2118/190305-PA

    Article  Google Scholar 

  • Darabi, H., Ettehad, A., Javadpour, F., Sepehrnoori, K.: Gas flow in ultra-tight shale strata. J. Fluid Mech. 710641–658 (2012). https://doi.org/10.1017/jfm.2012.424

    Article  Google Scholar 

  • Dehghan, M., Mirzaei, D.: Application of the dual reciprocity boundary integral equation technique to solve the non- linear Klein-Gordon equation. Comput. Phys. Commun. 181(8), 1410–1418 (2010)

    Article  Google Scholar 

  • Do, D.D., Wang, K.: A new model for the description of adsorption kinetics in heterogeneous activated carbon. Carbon 36(10), 1539–1554 (1998)

    Article  Google Scholar 

  • Evans, R.D., Lekia, S.D.L.: A reservoir simulation study of naturally fractured lenticular tight gas sand reservoirs. J. Energy Res. Technol. 112(4), 231–238 (1990). https://doi.org/10.1115/1.2905763

    Article  Google Scholar 

  • Fang, S., Cheng, L., Ayala, L.F.: A coupled boundary element and finite element method for the analysis of flow through fractured porous media. J. Petrol. Sci. Eng. 152, 275–390 (2017)

    Article  Google Scholar 

  • Fathi, E., Akkutlu, I.Y.: Matrix heterogeneity effects on gas transport and adsorption in coalbed and shale gas reservoirs. Transp. Porous Media 80, 281–304 (2009)

    Article  Google Scholar 

  • Fathi, E., Akkutlu, I.Y.: Mass transport of adsorbed-phase in stochastic porous medium with fluctuating porosity field and nonlinear gas adsorption kinetics. Transp. Porous Media 91(1), 5 (2012)

    Article  Google Scholar 

  • Geiger, S., Matthai, S., Niessner, J., Helmig, R.: Black-oil simulations for three-component, three phase flow in fractured porous media. SPE J. 18(4), 670–684 (2009)

    Article  Google Scholar 

  • Hajibeygi, H., Karvounis, D., Jenny, P.: A hierarchical fracture model for the iterative multiscale finite volume method. J. Comput. Phys. 230(24) 8729–8743 (2011). https://doi.org/10.1016/j.jcp.2011.08.021

    Article  Google Scholar 

  • He, Z., Zhu, Rc., Miao, G.P.: The simulation and analysis of tank sloshing with porosity girder by multi-domain boundary element method. J. Hydrodyn. 22, 546–553 (2010)

    Article  Google Scholar 

  • Hill, A.C., G.W. Thomas.: A new approach for simulating complex fractured reservoirs. Paper presented at the Middle East Oil Technical Conference and Exhibition, Bahrain (1985)

  • Hu, B.X., Deng, F., Cushman, J.H.: Non-local reactive transport with physical and chemical heterogeneity: linear non-equilibrium sorption with random Kd. Water Resour. Res. 31(9), 2239–2252 (1995)

    Article  Google Scholar 

  • Javadpour, F.: Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone). J. Can. Petrol. Technol. 48(08), 16–21 (2009). https://doi.org/10.2118/09-08-16-DA

  • Jiang, J., Younis, R.M.: Hybrid coupled discrete-fracture/matrix and multi-continuum models for unconventional reservoir simulation. SPE J. 21(03), 1009–1027 (2016)

    Article  Google Scholar 

  • Karimi-Fard, M., Firoozabadi, A.: Numerical simulation of water injection in fractured media using the discrete-fracture model and the Galerkin method. SPE Reserv. Eval. Eng. 6(02), 117–126 (2003)

    Article  Google Scholar 

  • Karimi-Fard, M., Durlofsky, L.J., Aziz, K.: An efficient discrete-fracture model applicable for general-purpose reservoir aimulators. SPE J. 9(02), 227–236 (2004). https://doi.org/10.2118/88812-PA

    Article  Google Scholar 

  • Kazemi, H., Merrill, L.S., Porterfield, K.L., Zeman, P.R.: Numerical simulation of water-oil flow in naturally fractured reservoirs. Soc. Petrol. Eng. J. 16(06), 317–326 (1976). https://doi.org/10.2118/5719-PA

    Article  Google Scholar 

  • Kikani, K.: Application of boundary element method to streamline generation and pressure transient testing. PhD dissertation. Stanford University (1989)

  • Kim, J.-G., Deo, M.D.: Finite element discrete-fracture model for multiphase flow in porous media. AIChE J. 46(6), 1120–1130 (2000). https://doi.org/10.1002/aic.690460604

    Article  Google Scholar 

  • Lee, S.H., Lough, M.F., Jensen, C.L.: Hierarchical Modeling of flow in naturally fracture formation with multiple length scales. Water Resour. Res. 37(3), 443 (2001)

    Article  Google Scholar 

  • Li, L., Lee, S.H.: Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media. SPE Reserv. Eval. Eng. 11(04), 750–758 (2008)

    Article  Google Scholar 

  • Liggett, J., Liu, P.: The boundary integral equation method for porous media flow. George Allen & Unwin Publishers (1983)

  • Onyejekwe, O.O.: A boundary element-finite element equation solutions to flow in heterogeneous porous media. Transp. Porous Media 31, 293–312 (1998)

    Article  Google Scholar 

  • Partridge, P.W., Brebbia, C.A., Wrobel, L.C.: Dual Reciprocity Boundary Element Method. Computational Mechanics Publications, Southampton Boston U.K. (1991)

    Book  Google Scholar 

  • Pecher, R., Stanislav, J.F.: Boundary element techniques in petroleum reservoir simulation. J. Petrol. Sci. Eng. 17, 353–366 (1997)

  • Riewchotisakul, S., Akkutlu, I.Y.: Adsorption-enhanced transport of hydrocarbons in organic nanopores. SPE J. 21(06), 1960–1969 (2016). https://doi.org/10.2118/175107-PA

    Article  Google Scholar 

  • Shakiba, M., Sepehrnoori, K.: Using Embedded discrete fracture model (EDFM) and microseismic monitoring data to characterize the complex hydraulic fracture networks. In: Paper SPE 157142 presented at SPE Annual Technical Conference and Exhibition, 28–30 September, Houston, Texas, USA. (2015)

  • Siemons, N., Wolf Karl-Heinz, A.A., Bruining, J.: Interpretation of carbon dioxide diffusion behavior in coals. Int. J. Coal Geol. 72, 315–324 (2017)

    Article  Google Scholar 

  • Singh, K.M., Tanaka, M.: Dual reciprocity boundary element analysis of transient advection‐diffusion. Int. J. Numer. Methods Heat Fluid Flow 13(5) 633–646 (2003). https://doi.org/10.1108/09615530310482481

    Article  Google Scholar 

  • Wang, X., Sheng, J.: Gas sorption and non-Darcy flow in shale reservoirs. Petrol. Sci. 14(4), 746–754 (2017). https://doi.org/10.1007/s12182-017-0180-3

    Article  Google Scholar 

  • Warren, J.E., Root P.J.: The behavior of naturally fractured reservoirs. Soc. Petrol. Engineers Journal 3(03) 245–255 (1963). https://doi.org/10.2118/426-PA

    Article  Google Scholar 

  • Wrobel, L.C., Brebbia, C.A.: The dual reciprocity boundary element formulation for nonlinear diffusion problems. Comput. Methods Appl. Mech. Eng. 65, 147–164 (1987)

    Article  Google Scholar 

  • Wrobel, L.C., Brebbia, C.A., Nardini, D.: The dual reciprocity boundary element formulation for transient heat conduction. 1986. In: Finite elements in water resources VI. 801–11.

  • Wu, K., Li, X., Guo, C., Wang, C., Chen, Z.: A unified model for gas transfer in nanopores of shale-gas reservoirs: coupling pore diffusion and surface diffusion. SPE J. 21(05), 1583–1611 (2016)

    Article  Google Scholar 

  • Wu, M., Ding, M., Yao, J., Li, C., Huang, Z., Xu, S.: Production-performance analysis of composite shale-gas reservoirs by the boundary-element method. SPE J. 22(01), 235–252 (2019)

    Google Scholar 

  • Xia, Y., Jin, Y., Chen, K.P., Chen, M., Chen, D.: Simulation on gas transport in shale: the coupling of free and adsorbed gas. J. Nat. Gas Sci. Eng. 41, 112–124 (2017)

    Article  Google Scholar 

  • Yu, W., Wu, K., Sepehrnoori, K.: A semianalytical model for production simulation from nonplanar hydraulic-fracture geometry in tight oil reservoirs. SPE J. 21(03), 1028–1040 (2016)

    Article  Google Scholar 

  • Zhang, M., Ayala, L.F.: A general boundary integral solution for fluid flow analysis in reservoirs with complex fracture geometries. J. Energy Resour. Technol. 140(5), 052907 (2018)

    Article  Google Scholar 

  • Zhang, M., Ayala, L.F.: Variable rate and pressure integral solutions to the nonlinear gas diffusivity equation in unconventional systems. Fuel 235, 1100–1111 (2019)

    Article  Google Scholar 

  • Zhang, M., Ayala, L.F.: The dual-reciprocity boundary element method solution for gas recovery from unconventional reservoirs with discrete fracture networks. SPE J. 25(06), 2898–2914 (2020)

    Article  Google Scholar 

  • Zhang, M., Chakraborty, N., Karpyn, Z., Emami-Meybodi, H., Ayala, L.F.: Experimental and numerical study of gas diffusion and sorption kinetics in ultratight rocks. Fuel 286, 119300 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from China University of Petroleum Beijing (No. 2462021YXZZ011) and Natural Science Foundation of China (No. 52174042) for the completion of this study.

Funding

This work was supported by Science Foundation of China University of Petroleum Beijing (No. 2462021YXZZ011) and Natural Science Foundation of China (No. 52174042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. Data and codes are available upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Derivation of the Dimensionless Equation and Variables

The continuity equation for free-gas flow in matrix, as flux to fracture counted as source term, is expressed as:

$$\nabla \cdot \left( {D_{{{\text{eff}}}} \nabla C} \right) - Q_{m} = \frac{{\partial \left( {\phi C} \right)}}{\partial t} - R_{s} .$$
(33)

Qm is the strength distribution of the source in mass per unit volume of the porous medium per unit time. Following similar development in Liggett and Liu (1983) and Pecher and Stanislav (1997), we treat Np discrete fractures as plane sources (Γpj) and rewrite Qm as follows:

$$Q_{m} = \sum\limits_{j = 1}^{{n_{p} }} {\frac{1}{{\Gamma_{p,j} }}\int\limits_{{\Gamma_{p,j} }} {Q_{p,j} \delta \left( {x - x_{p} } \right)\delta \left( {y - y_{p} } \right)} } d\tau$$
(34)

where strength Qp,j is a function of position along plane sources Γp,j. Using dimensionless group provided in Table

Table 2 The dimensionless variables used in the proposed DRBEM formulation

2, the dimensionless form of Eq. 33, after linearization, is given as:

$$\nabla^{2} C_{{\text{D}}} - \sum\limits_{k = 1}^{{N_{p} }} {\frac{1}{{\Gamma_{p,k} }}\int\limits_{{\Gamma_{p,k} }} {Q_{pD,k} \delta \left( {x_{{\text{D}}} - x_{pD} } \right)\delta \left( {y_{{\text{D}}} - y_{{p_{{\text{D}}} }} } \right)} } d\tau_{{\text{D}}} = \frac{{\partial C_{{\text{D}}} }}{{\partial t_{{\text{D}}} }} - R_{sD} .$$
(35)

Similarly, for the sorbed-gas equation:

$$\nabla \cdot \left[ {\left( {1 - \phi } \right)D_{{\text{s}}} \nabla C_{{\text{s}}} } \right] = \frac{{\partial \left[ {\left( {1 - \phi } \right)C_{{\text{s}}} } \right]}}{\partial t} + R_{s} .$$
(36)

Substituting the dimensionless group in Table 2 leads to:

$$\nabla^{2} C_{sD} = \frac{{\partial C_{sD} }}{{\partial t_{sD} }}{ + }R_{sD} .$$
(37)

Appendix 2: The Dual-Reciprocity Boundary Element Method for Gas Flow in Matrix

Multiplication of Eq. 8 by 13 leads to:

$$G\nabla^{2} C_{{\text{D}}} - \sum\limits_{k = 1}^{{N_{p} }} {\frac{1}{{\Gamma_{p,k} }}\int\limits_{{\Gamma_{p,k} }} {GQ_{pD,j} \delta \left( {x_{{\text{D}}} - x_{pD} } \right)\delta \left( {y_{{\text{D}}} - y_{{p_{{\text{D}}} }} } \right)} } d\tau_{{\text{D}}} = \sum\limits_{i = 1}^{{N_{t} }} {Gf_{i} \left( {x_{{\text{D}}} ,y_{{\text{D}}} } \right)} \alpha_{i} \left( {t_{{\text{D}}} } \right).$$
(38)

Integration of Eq. 38 over the entire domain \({\Omega }\) leads to

$$\int\limits_{\Omega } {G\nabla^{2} C_{{\text{D}}} } d\Omega - \sum\limits_{k = 1}^{{N_{p} }} {\frac{1}{{\Gamma_{p,k} }}\int\limits_{{\Gamma_{p,k} }} {GQ_{pD,j} } } d\tau_{{\text{D}}} = \sum\limits_{i = 1}^{{N_{t} }} {\alpha_{i} \left( {t_{{\text{D}}} } \right)\int\limits_{\Omega } {G\nabla^{2} \hat{C}_{{{\text{D}},i}} } d\Omega } .$$
(39)

Recall Green’s second identity:

$$\int\limits_{\Omega } {\left( {G\nabla^{2} C_{{\text{D}}} - C_{{\text{D}}} \nabla^{2} G} \right)} d\Omega = \int\limits_{\Gamma } {\left( {G\frac{{\partial C_{{\text{D}}} }}{\partial n} - C_{{\text{D}}} \frac{\partial G}{{\partial n}}} \right)} d\tau$$
(40)

where n is the outward normal vector of the boundary Γ. Because G is complementary solution of the homogenous counterpart of Eq. 4, which represents the system response to the unit source strength at (ξ, η):

$$\nabla^{2} G = - \delta \left( {x_{{\text{D}}} - \xi } \right)\delta \left( {y_{{\text{D}}} - \eta } \right).$$
(41)

Using the shifting property of Dirac delta function, for a point CD(xD,yD) that is inside domain \({\Omega }\), the integral of Dirac delta function over region \({\Omega }\) is evaluated over the integral region of \(\Gamma_{ \in }\) where \(\in \to 0\); if a point CD(xD,yD) is on the smooth boundary Γ, the integral region of \(\Gamma_{ \in }\) is divided into two parts, and only half of integration area (\(\in^{\prime }\)) should be evaluated. Therefore, the second term on the LHS of Eq. 40 is:

$$\int\limits_{\Omega } {\left( { - C_{{\text{D}}} \nabla^{2} G} \right)} d\Omega = \theta C_{{\text{D}}} .$$
(42)

θ equals to one if the CD is inside domain, and 0.5 if it is on smooth boundary. Combining Eqs. 39, 40 and 42, the LHS of Eq. 39 is now transformed to boundary integral form as:

$$\begin{gathered} G\nabla^{2} C_{{\text{D}}} - \sum\limits_{k = 1}^{{N_{p} }} {\frac{1}{{\Gamma_{p,k} }}\int\limits_{{\Gamma_{p,k} }} {GQ_{pD,k} \delta \left( {x_{{\text{D}}} - x_{pD} } \right)\delta \left( {y_{{\text{D}}} - y_{{p_{{\text{D}}} }} } \right)} } \hfill \\ = \theta C_{{\text{D}}} + \int\limits_{\Gamma } {\left( {C_{{\text{D}}} \frac{\partial G}{{\partial n}} - G\frac{{\partial C_{{\text{D}}} }}{\partial n}} \right)} d\tau - \sum\limits_{k = 1}^{{N_{p} }} {\frac{1}{{\Gamma_{p,k} }}\int\limits_{{\Gamma_{p,k} }} {GQ_{pD,k} } } d\tau_{{\text{D}}} . \hfill \\ \end{gathered}$$
(43)

Applying Green’s second identity and following similar development from Eqs. 40 to 42, the RHS of is rewritten in terms of boundary integral as:

$$\sum\limits_{i = 1}^{{N_{t} }} {\alpha_{i} \left( {t_{{\text{D}}} } \right)\int\limits_{\Omega } {G\nabla^{2} \hat{C}_{{{\text{D}},i}} } d\Omega } = \sum\limits_{i = 1}^{{N_{t} }} {\left[ {\alpha_{i} \left( {\theta \widehat{C}_{{{\text{D}},i}} - \int\limits_{\Gamma } {\left( {\widehat{C}_{{{\text{D}}_{,i} }} \frac{\partial G}{{\partial n}} - G\frac{{\partial \widehat{C}_{{{\text{D}},i}} }}{\partial n}} \right)} d\tau } \right)} \right]} .$$
(44)

Combination of Eqs. 43 and 44 results in:

$$\theta C_{{\text{D}}} + \int\limits_{\Gamma } {\left( {C_{{\text{D}}} \frac{\partial G}{{\partial n}} - G\frac{{\partial C_{{\text{D}}} }}{\partial n}} \right)} d\tau - \sum\limits_{k = 1}^{{N_{p} }} {\frac{1}{{\Gamma_{p,k} }}\int\limits_{{\Gamma_{p,k} }} {GQ_{pD,k} } } d\tau_{{\text{D}}} = \sum\limits_{i = 1}^{{N_{t} }} {\left[ {\alpha_{i} \left( {\theta \widehat{C}_{{{\text{D}},i}} - \int\limits_{\Gamma } {\left( {\widehat{C}_{{{\text{D}}_{,i} }} \frac{\partial G}{{\partial n}} - G\frac{{\partial \widehat{C}_{{{\text{D}},i}} }}{\partial n}} \right)} d\tau } \right)} \right]} .$$
(45)

Appendix 3: Fracture Flow Model

Assuming fracture has no storage capacity, gas flow in one-dimensional fracture can be written as:

$$\frac{\partial }{\partial l}\left( {C\frac{{k_{{\text{f}}} }}{{\mu_{{\text{g}}} }}\frac{\partial p}{{\partial l}}} \right) - Q_{f}^{*} = 0$$
(46)

where l represents flow direction along 1D fracture, \({ }Q_{f}^{*}\) is the line source strength of the fracture and is opposite in sign to that of matrix. Notably, only viscous (Darcian) flow is considered in fracture domain. Substituting definition of gas compressibility cg, Eq. 46 can be further approximated as following:

$$\frac{\partial }{\partial l}\left( {\frac{{k_{{\text{f}}} }}{{\mu_{{\text{g}}} c_{{\text{g}}} }}\frac{\partial C}{{\partial l}}} \right) - Q_{f}^{*} = 0.$$
(47)

The dimensionless form of Eq. 47, after employing definitions in "Appendix 1", is written as:

$$\frac{{\text{d}}}{{{\text{d}}l_{D} }}\left( {\lambda_{g} \frac{{dC_{{\text{D}}} }}{{dl_{{\text{D}}} }}} \right) - Q_{fD}^{*} = 0$$
(48)

where

$$\lambda_{g} = \frac{{\mu_{{{\text{g}},{\text{ini}}}} c_{{{\text{g}},{\text{ini}}}} }}{{\mu_{{\text{g}}} c_{{\text{g}}} }}$$
$$l_{fD} = l/\sqrt A$$
$$Q_{fD}^{*} = \frac{{Q_{f}^{*} \mu_{{g,{\text{ini}}}} c_{{g,{\text{ini}}}} A}}{{k_{f} \left( {C_{{{\text{ini}}}} - C_{{{\text{ref}}}} } \right)}}.$$
(49)

\(\mu_{{{\text{g}},{\text{ini}}}} c_{{{\text{g}},{\text{ini}}}}\) is the gas viscosity–compressibility product at initial condition. Fracture domain can be discretized into a series of control volumes, and Eq. 48 is integrated over each control volume \(\Delta V\):

$$\int\limits_{\Delta V} {\frac{{\text{d}}}{{{\text{d}}l_{D} }}\left( {\lambda_{g} \frac{{{\text{d}}C_{D} }}{{{\text{d}}l_{D} }}} \right)} dV - \int\limits_{\Delta V} {Q_{fD}^{*} } dV = w_{f} hl_{{\text{D}}} \int\limits_{{ - \frac{{ - l_{fD} }}{2}}}^{{\frac{{ + l_{fD} }}{2}}} {\frac{{\text{d}}}{{{\text{d}}l_{{\text{D}}} }}\left( {\lambda_{g} \frac{{{\text{d}}C_{{\text{D}}} }}{{{\text{d}}l_{{\text{D}}} }}} \right)} dl - \frac{{\overline{Q}_{fD}^{*} }}{{h\Delta l_{fD} }} = 0$$
(50)

where

$$\frac{{\overline{Q}_{fD}^{*} }}{{\Delta l_{fD} }} = \int\limits_{{\Delta l_{fD} }} {Q_{fD}^{*} } dl = \frac{{\mu_{{{\text{g}},{\text{ini}}}} c_{{{\text{g}},{\text{ini}}}} A}}{{k_{f} \left( {C_{{{\text{ini}}}} - C_{{{\text{ref}}}} } \right)}}\int\limits_{{\Delta l_{fD} }} {Q_{f}^{*} } dl.$$
(51)

Relating Eq. 50 to the source strength used in matrix flow, Eq. 50 is readily simplified using center difference approximation as:

$$\left. {\lambda_{g} } \right|_{{l_{fD} + \frac{{\Delta l_{fD} }}{2}}} \left( {\frac{{dC_{{\text{D}}} }}{{dl_{fD} }}} \right)_{{l_{fD} + \frac{{\Delta l_{fD} }}{2}}} - \left. {\lambda_{g} } \right|_{{l_{fD} - \frac{{\Delta l_{fD} }}{2}}} \left( {\frac{{dC_{{\text{D}}} }}{{dl_{fD} }}} \right)_{{l_{fD} - \frac{{\Delta l_{fD} }}{2}}} - \frac{{\mu_{{{\text{g}},{\text{ini}}}} c_{{{\text{g}},{\text{ini}}}} D_{{{\text{eff}}}} }}{{k_{{\text{f}}} w_{{\text{f}}} }}q_{fD} = 0.$$
(52)

The generalized form (Eq. 52) that is written for i-th cell is expressed as:

$$T_{i,i - 1} \left( {C_{{{\text{D}},i - 1}} - C_{{{\text{D}},i}} } \right) - T_{i + 1,i} \left( {C_{{{\text{D}},i}} - C_{{{\text{D}},i + 1}} } \right) - \frac{{\mu_{{g,{\text{ini}}}} c_{{g,{\text{ini}}}} D_{{{\text{eff}}}} }}{{k_{f} w_{f} }}q_{fD,i} = 0$$
(53)

where

$$T_{i,i - 1} = \frac{1}{{1/\gamma_{i} + 1/\gamma_{i - 1} }} = \frac{{\gamma_{i} \gamma_{j} }}{{\gamma_{i} + \gamma_{j} }};$$
$$\gamma_{i} = \frac{{2\lambda_{g,i} }}{{\Delta l_{fD,i} }}.$$
(54)

For special blocks including grid blocks neighboring to intersections and blocks connecting to wells, expressions for transmissibilities can be derived following similar development in Zhang and Ayala (2018).

Appendix 4: System of Equations Solved in DRBEM-FVM

Given the free-gas DRBEM and FVM equations (Eqs. 27 and 32), they are rearranged to move any known information (e.g., known boundary specifications and results from previous time level) to the RHS of the equations. Taking the example of fluxes being specified at all outer boundary elements (qB,sp), the unknowns to be solved are: outer boundary nodal concentrations (CB), internal nodal concentration (CI), fracture element source strengths (qF) and concentrations (CF). The resulting coefficient matrix and right-hand-side of system of equations are shown below:

(55)

where

$$\begin{gathered} {\mathbf{B}}_{{\mathbf{B}}}^{{{\mathbf{(n}}_{{\mathbf{t}}} {\mathbf{ + 1)}}}} {\mathbf{ = }}\frac{{{\mathbf{2X}}_{{{\mathbf{BB}}}} }}{{{\mathbf{\Delta t}}_{{\mathbf{D}}} }}{\mathbf{ + H}}_{{{\mathbf{BB}}}} , \, {\mathbf{B}}_{{\mathbf{I}}}^{{{\mathbf{(n}}_{{\mathbf{t}}} {\mathbf{ + 1)}}}} {\mathbf{ = }}\frac{{{\mathbf{2X}}_{{{\mathbf{BI}}}} }}{{{\mathbf{\Delta t}}_{{\mathbf{D}}} }}, \, {\mathbf{B}}_{{\mathbf{F}}}^{{{\mathbf{(n}}_{{\mathbf{t}}} {\mathbf{ + 1)}}}} {\mathbf{ = }}\frac{{{\mathbf{2X}}_{{{\mathbf{BF}}}} }}{{{\mathbf{\Delta t}}_{{\mathbf{D}}} }} \hfill \\ {\mathbf{I}}_{{\mathbf{B}}}^{{{\mathbf{(n}}_{{\mathbf{t}}} {\mathbf{ + 1)}}}} {\mathbf{ = }}\frac{{{\mathbf{2X}}_{{{\mathbf{IB}}}} }}{{{\mathbf{\Delta t}}_{{\mathbf{D}}} }}{\mathbf{ + H}}_{{{\mathbf{IB}}}} , \, {\mathbf{I}}_{{\mathbf{I}}}^{{{\mathbf{(n}}_{{\mathbf{t}}} {\mathbf{ + 1)}}}} {\mathbf{ = }}\frac{{{\mathbf{2X}}_{{{\mathbf{II}}}} }}{{{\mathbf{\Delta t}}_{{\mathbf{D}}} }},{\mathbf{I}}_{{\mathbf{F}}}^{{{\mathbf{(n}}_{{\mathbf{t}}} {\mathbf{ + 1)}}}} {\mathbf{ = }}\frac{{{\mathbf{2X}}_{{{\mathbf{IB}}}} }}{{{\mathbf{\Delta t}}_{{\mathbf{D}}} }}. \hfill \\ \end{gathered}$$
(56)

The unknowns to be solved in the system of equations given by Eq. 28 include Nb unknowns at outer boundary nodes (CsD,n or qsD,n, depending on the prevailing boundary condition of sorbed gas at boundaries), and L unknowns at internal nodes (CsD,i). Similarly, if the fluxes are specified at all outer boundary elements (qsB,sp), the unknowns to be solved would be: outer boundary nodal concentrations (CsB), internal nodal concentration (CsI) and fracture nodal concentrations (CsF). The resulting coefficient matrix and right-hand side of system equations are shown below:

(57)

After all unknowns of bulk- and sorbed-phase equations (Eqs. 55 and 57) are solved for in terms of nodal values in boundary, fracture and internal domain, concentrations of any position inside domain can be straightforwardly calculated via the DRBEM equations where λ = 1. Iteration is needed to arrive the final solution of Eqs. 55 and 57 due to the dependency of sorption kinetic term E. A straightforward successive substitution scheme is implemented in this paper. Following Zhang and Ayala (2020), the integrals that are time-invariant and dependent on geometry only in Eq. 56 (B, I, F and X) are carried out analytically and derived from the expression of G shown in Eq. 15. Detailed analytical expression of these integrals and interpolation functions are provided in Zhang and Ayala (2020) and are thus not repeated here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Ayala, L.F. The Dual-Reciprocity Boundary Element Analysis for Hydraulically Fractured Shale Gas Reservoirs Considering Diffusion and Sorption Kinetics. Transp Porous Med 142, 531–557 (2022). https://doi.org/10.1007/s11242-022-01757-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-022-01757-9

Keywords

Navigation