Skip to main content

Dairy Farming from a Production Economics Perspective: An Overview of the Literature

  • Living reference work entry
  • First Online:
Handbook of Production Economics

Abstract

The purpose of this chapter is to give a broad overview of the published empirical work on the production economics of dairy farming as well as an outlook on future challenges for this area of research. This chapter shows that the vast production economics literature on dairy farming has been used to address a wide variety of topics including efficiency and productivity, technology adoption, economies of size, scale and scope, the effects of government intervention policies in the sector, the effect of risk and uncertainty, and issues relating to sustainability including climatic effects, animal welfare, and environmental efficiency. Dairy farming faces important challenges, particularly with regard to environmental sustainability, animal welfare, structural changes, and input and output price volatility, all of which provide fertile ground for future production economics research in dairy. The conceptual frameworks and empirical analyses reviewed in this chapter show that production economists have several tools at their disposal to carry out studies related to these challenges and thereby contribute to policy analyses and formulation. Moreover, the role of production economists, working with scientists in various other disciplines, will be paramount in the search for avenues to improve the overall productivity of dairy farming while offering policymakers sound advice on sustainable technologies and tools to deal with greater risk and uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Food and Agriculture Organization (FAO) (2016) The global dairy sector: facts. https://www.fil-idf.org/wp-content/uploads/2016/12/FAO-Global-Facts-1.pdf. Accessed 4 June 2020

  2. Food and Agriculture Organization (FAO) (2019) Climate change and the global dairy cattle sector: the role of the dairy sector in a low-carbon future. FAO, Roma

    Google Scholar 

  3. Practices responsible for variations in physical requirements and economic costs of milk production on Wisconsin dairy farms. Wisconsin Agricultural Experiment Station Bulletins 79

    Google Scholar 

  4. Ezekiel M, Rauchenstein E, Wells O (1932) Farmers’ response to price in the production of market milk. United States Department of Agriculture, Bureau of Agricultural Economics, Washington, DC

    Google Scholar 

  5. Cassels JM (1933) The nature of statistical supply curves. J Farm Econ 15:378–387. https://doi.org/10.2307/1231011

    Article  Google Scholar 

  6. Cassels JM, Malenbaum W (1938) Doubts about statistical supply analysis. J Farm Econ 20:448–461. https://doi.org/10.2307/1231146

    Article  Google Scholar 

  7. Cassels J (1937) A study of fluid milk prices. Harvard University Press, Cambridge

    Google Scholar 

  8. Halvorson HW (1958) The response of milk production to price. J Farm Econ 40:1101–1113. https://doi.org/10.2307/1234979

    Article  Google Scholar 

  9. Mighell R, Black J (1951) Interregional competition in agriculture: with special reference to dairy farming in the Lake States and New England. Harvard University Press, Cambridge

    Google Scholar 

  10. Changes in milk production in the United States, 1924–51. Pennsylvania Agricultural Experiment Station Progress Report 97

    Google Scholar 

  11. Schuh C (1957) The supply of fluid milk in the Detroit milk shed as affected by cost of production. Michigan State University, East Lansing

    Google Scholar 

  12. Cochrane W (1958) Farm prices: myth and reality. University of Minnesota Press

    Google Scholar 

  13. Cowling K, Gardner TW (1964) Milk supply response: an interbreed analysis. Statistician 14:255–266. https://doi.org/10.2307/2987047

    Article  Google Scholar 

  14. Wipf L, Houck JP (1967) Milk supply response in the United States: an aggregate analysis. Department of Applied Economics, University of Minnesota

    Google Scholar 

  15. Wilson RR, Thompson RG (1967) Demand, supply, and price relationships for the dairy sector, post-World War II period. J Farm Econ 49:360–371. https://doi.org/10.2307/1237206

    Article  Google Scholar 

  16. Chen D, Courtney R, Schmitz A (1972) A polynomial lag formulation of milk production response. Am J Agric Econ 54:77–83. https://doi.org/10.2307/1237736

    Article  Google Scholar 

  17. Prato AA (1973) Milk demand, supply, and price relationships, 1950–1968. Am J Agric Econ 55:217–222. https://doi.org/10.2307/1238441

    Article  Google Scholar 

  18. Askari H, Cummings JT (1977) Estimating agricultural supply response with the Nerlove model: a survey. Int Econ Rev 18:257–292. https://doi.org/10.2307/2525749

    Article  Google Scholar 

  19. Faris JE, McPherson WW (1957) Application of linear programming in an analysis of economic changes in farming. Rev Econ Stat 39:421–434. https://doi.org/10.2307/1927013

    Article  Google Scholar 

  20. Cowling K, Baker C (1963) A polyperiod model for estimating the supply of milk. J Agric Econ Res 15:15–23

    Google Scholar 

  21. Kelley PL, Knight DA (1965) Short-run elasticities of supply for milk. J Farm Econ 47:93–104. https://doi.org/10.2307/1236156

    Article  Google Scholar 

  22. Barker R (1965) Appropriate methods for estimating the short-run elasticity of supply for milk. J Farm Econ 47:840–843. https://doi.org/10.2307/1236295

    Article  Google Scholar 

  23. Jensen E (1940) Determining input-output relationships in milk production. J Farm Econ 22:249–258. https://doi.org/10.2307/1232051

    Article  Google Scholar 

  24. Christensen RP (1941) Expectation and performance. Related to conservation and production adjustments in the midwest dairy region. J Farm Econ 23:632–645. https://doi.org/10.2307/1231562

    Article  Google Scholar 

  25. Herrmann LF (1943) Diminishing returns in feeding commercial dairy herds. J Farm Econ 25:397409. https://doi.org/10.2307/1231708

    Article  Google Scholar 

  26. Heady EO (1951) A production function and marginal rates of substitution in the utilization of feed resources by dairy cows. J Farm Econ 33:485–498. https://doi.org/10.2307/1233559

    Article  Google Scholar 

  27. Redman JC (1952) Economic aspects of feeding for milk production. J Farm Econ 34:333–345. https://doi.org/10.2307/1233691

    Article  Google Scholar 

  28. Rauchenstein E (1953) Forage-grain substitution: its importance in the economics of milk production. J Farm Econ 35:562–571. https://doi.org/10.2307/1233369

    Article  Google Scholar 

  29. Heady EO, Schnittker J, Bloom S, Jacobsen NL (1956) Isoquants, isoclines and economic predictions in dairy production. J Farm Econ 38:763–779. https://doi.org/10.2307/1234460

    Article  Google Scholar 

  30. Heady EO (1957) An econometric investigation of the technology of agricultural production functions. Econometrica 25:249–268. https://doi.org/10.2307/1910253

    Article  Google Scholar 

  31. Heady E, Dillon J (1961) Agricultural production functions. Iowa State University Press, Ames

    Google Scholar 

  32. Christensen L, Jorgenson D, Lau L (1971) Conjugate duality and the transcendental logarithmic production function. Econometrica 39:255–256

    Google Scholar 

  33. Aune HJ, Day LM (1959) Determining the effect of size of herd and equipment on dairy chore labor. J Farm Econ 41:569–583. https://doi.org/10.2307/1234879

    Article  Google Scholar 

  34. Waugh FV (1951) The minimum-cost dairy feed (an application of “linear programming”). J Farm Econ 33:299–310. https://doi.org/10.2307/1233608

    Article  Google Scholar 

  35. Weeks EE (1964) Maximum profit dairy rations that include wheat. J Farm Econ 46:580–587. https://doi.org/10.2307/1236441

    Article  Google Scholar 

  36. Coffey JD, Toussaint WD (1963) Some economic aspects of free-choice feeding of dairy cows. J Farm Econ 45:1213–1218. https://doi.org/10.2307/1236794

    Article  Google Scholar 

  37. Heady EO, Madden JP, Jacobson NL, Freeman AE (1964) Milk production functions incorporating variables for cow characteristics and environment. J Farm Econ 46:1–19. https://doi.org/10.2307/1236469

    Article  Google Scholar 

  38. Hoover LM, Kelley PL, Ward GM, Feyerherm AM, Chaddha R (1967) Economic relationships of hay and concentrate consumption to milk production. J Farm Econ 49:64–78. https://doi.org/10.2307/1237068

    Article  Google Scholar 

  39. Paris Q, Malossini Davis F, Pilla AM, Romita A (1970) A note on milk production functions. Am J Agric Econ 52:594–598. https://doi.org/10.2307/1237269

    Article  Google Scholar 

  40. Farrell MJ (1957) The measurement of productive efficiency. J R Stat Soc Ser A (Gen) 120:253–281. https://doi.org/10.2307/2343100

    Article  Google Scholar 

  41. Debreu G (1951) The coefficient of resource utilization. Econometrica 19:273–292

    Article  Google Scholar 

  42. Koopmans T (1951) Analysis of production as an efficient combination of activities. In: Koopmans T (ed) Activity analysis of production and allocation. J. Wiley, New York

    Google Scholar 

  43. Farrell MJ, Fieldhouse M (1962) Estimating efficient production functions under increasing returns to scale. J R Stat Soc Ser A (Gen) 125:252–267. https://doi.org/10.2307/2982329

    Article  Google Scholar 

  44. Fried H, Lovell C, Schmidt S (2008) Efficiency and productivity. In: The measurement of productive efficiency and productivity growth. Oxford University Press, pp 3–91

    Chapter  Google Scholar 

  45. Boles JN (1966) Efficiency squared – efficient computation of efficiency indexes. In: Proceedings of the 39th Annual Meeting (Western Farm Economics Association) 39 (August 15–17, 1966), pp 137–142

    Google Scholar 

  46. Boles JN (1971) The 1130 Farrell efficiency system – multiple products, multiple factors. Giannini Foundation of Agricultural Economics

    Google Scholar 

  47. Bressler RG (1966) The measurement of productive efficiency. In: Proceedings of the 39th Annual Meeting (Western Farm Economics Association) 39 (August 15–17, 1966), pp 129–136

    Google Scholar 

  48. Seitz WD (1970) The measurement of efficiency relative to a frontier production function. Am J Agric Econ 52:505–511. https://doi.org/10.2307/1237257

    Article  Google Scholar 

  49. Charnes A, Cooper W, Rhodes E (1978) Measuring efficiency of decision making units. Eur J Oper Res 2:429–444

    Article  Google Scholar 

  50. Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag Sci 30:1078–1092. https://doi.org/10.1287/mnsc.30.9.1078

    Article  Google Scholar 

  51. Färe R, Grosskopf S, Lovell C (1985) The measurement of efficiency of production. Kluwer-Nijhoff, New York

    Book  Google Scholar 

  52. Simar L, Wilson PW (2007) Estimation and inference in two-stage, semi-parametric models of production processes. J Econ 136:31–64. https://doi.org/10.1016/j.jeconom.2005.07.009

    Article  Google Scholar 

  53. Färe R, Grosskopf S, Margaritis D (2008) Efficiency and productivity: Malmquist and more. In: Fried H, Lovell C, Schmidt S (eds) The measurement of productive efficiency and productivity growth. Oxford University Press

    Google Scholar 

  54. Aigner D, Chu S (1968) On estimating the industry production function. Am Econ Rev 58:826–839

    Google Scholar 

  55. Timmer CP (1971) Using a probabilistic frontier production function to measure technical efficiency. J Polit Econ 79:776–794. https://doi.org/10.1086/259787

    Article  Google Scholar 

  56. Aigner D, Lovell CAK, Schmidt P (1977) Formulation and estimation of stochastic frontier production function models. J Econ 6:21–37. https://doi.org/10.1016/0304-4076(77)90052-5

    Article  Google Scholar 

  57. Meeusen W, van Den Broeck J (1977) Efficiency estimation from Cobb-Douglas production functions with composed error. Int Econ Rev 18:435–444. https://doi.org/10.2307/2525757

    Article  Google Scholar 

  58. Schmidt P, Sickles R (1984) Production frontiers and panel data. J Bus Econ Stat 2:367–374

    Google Scholar 

  59. Battese GE, Coelli TJ (1995) A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empir Econ 20:325–332. https://doi.org/10.1007/BF01205442

    Article  Google Scholar 

  60. Greene W (2005) Fixed and random effects in stochastic frontier models. J Prod Anal 23:7–32. https://doi.org/10.1007/s11123-004-8545-1

    Article  Google Scholar 

  61. Greene WH (2008) The econometric approach to efficiency analysis. In: Fried HO, Lovell CAK, Schmidt SS (eds) The measurement of productive efficiency and productivity change. Oxford University Press, pp 92–250

    Chapter  Google Scholar 

  62. Tsionas EG, Kumbhakar SC (2014) Firm heterogeneity, persistent and transient technical inefficiency: a generalized true random-effects model. J Appl Econ 29:110–132. https://doi.org/10.1002/jae.2300

    Article  Google Scholar 

  63. Kumbhakar SC, Wang H, Horncastle A (2015) A practitioner’s guide to stochastic frontier analysis using Stata. Cambridge University Press, New York

    Book  Google Scholar 

  64. Filippini M, Greene W (2016) Persistent and transient productive inefficiency: a maximum simulated likelihood approach. J Prod Anal 45:187–196. https://doi.org/10.1007/s11123-015-0446-y

    Article  Google Scholar 

  65. Jondrow J, Knox Lovell CA, Materov IS, Schmidt P (1982) On the estimation of technical inefficiency in the stochastic frontier production function model. J Econ 19:233–238. https://doi.org/10.1016/0304-4076(82)90004-5

    Article  Google Scholar 

  66. Battese G, Coelli T (1988) Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. J Econ 38:387–399

    Article  Google Scholar 

  67. Battese GE, Coelli TJ (1992) Frontier production functions, technical efficiency and panel data: with application to paddy farmers in India. J Prod Anal 3:153–169

    Article  Google Scholar 

  68. Simar L, Wilson P (2008) Statistical inference in nonparametric models: recent developments and perspectives. In: Fried H, Lovell C, Schmidt S (eds) The measurement of productive efficiency and productivity growth. Oxford University Press

    Google Scholar 

  69. Martin JP, Page JM (1983) The impact of subsidies on X-efficiency in LDC industry: theory and an empirical test. Rev Econ Stat 65:608–617. https://doi.org/10.2307/1935929

    Article  Google Scholar 

  70. Triebs TP, Kumbhakar SC (2018) Management in production: from unobserved to observed. J Prod Anal 49:111–121. https://doi.org/10.1007/s11123-018-0526-x

    Article  Google Scholar 

  71. Hoch I (1955) Estimation of production function parameters and testing for efficiency, report of the Montreal meeting, september 10-13, 1954. Econometrica 23:324–337

    Google Scholar 

  72. Mundlak Y (1961) Empirical production function free of management bias. J Farm Econ 43:44–56

    Article  Google Scholar 

  73. Mundlak Y, Hoch I (1965) Consequences of alternative specifications in estimation of Cobb-Douglas production functions. Econometrica 33:814–828. https://doi.org/10.2307/1910358

    Article  Google Scholar 

  74. Hoch I (1976) Returns to scale in farming: further evidence. Am J Agric Econ 58:745–749. https://doi.org/10.2307/1238820

    Article  Google Scholar 

  75. Grisley W, Mascarenhas J (1985) Operating cost efficiency on Pennsylvania dairy farms. Northeast J Agric Resour Econ 14:88–95. https://doi.org/10.1017/S0899367X00000817

    Article  Google Scholar 

  76. Weersink A, Turvey CG, Godah A (1990) Decomposition measures of technical efficiency for Ontario dairy farms. Can J Agric Econ 38:439–456

    Article  Google Scholar 

  77. Cloutier L, Rowley R (1993) Relative technical efficiency: data envelopment analysis and Quebec’s dairy farms. Can J Agric Econ 41:169–176

    Article  Google Scholar 

  78. Tauer L (1993) Short-run and long-run efficiencies of New York dairy farms. Agric Resour Econ Rev 22:1–9

    Article  Google Scholar 

  79. Fraser I, Cordina D (1999) An application of data envelopment analysis to irrigated dairy farms in Northern Victoria, Australia. Agric Syst 59:267–282. https://doi.org/10.1016/S0308-521X(99)00009-8

    Article  Google Scholar 

  80. Asmild M, Hougaard JL, Kronborg D, Kvist HK (2003) Measuring inefficiency via potential improvements. J Prod Anal 19:59–76

    Article  Google Scholar 

  81. Mugera AW (2013) Measuring technical efficiency of dairy farms with imprecise data: a fuzzy data envelopment analysis approach. Aust J Agric Resour Econ 57:501–520. https://doi.org/10.1111/1467-8489.12008

    Article  Google Scholar 

  82. Hansson H, Manevska-Tasevska G, Asmild M (2018) Rationalising inefficiency in agricultural production – the case of Swedish dairy agriculture. Eur Rev Agric Econ:1–24. https://doi.org/10.1093/erae/jby042

  83. Müller J (1974) On sources of measured technical efficiency: the impact of information. Am J Agric Econ 56:730–738. https://doi.org/10.2307/1239302

    Article  Google Scholar 

  84. Bravo-Ureta BE (1986) Technical efficiency measures for dairy farms based on a probabilistic frontier function model. Can J Agric Econ 34:399–415

    Article  Google Scholar 

  85. Dawson P (1987) Farm-specific technical efficiency in the England and Wales dairy sector. Eur Rev Agric Econ 14:383–394

    Article  Google Scholar 

  86. Bravo-Ureta B, Rieger L (1990) Alternative production frontier methodologies and dairy farm efficiency. J Agric Econ 41:215–226

    Article  Google Scholar 

  87. Bravo-Ureta B, Rieger L (1991) Dairy farm efficiency measurement using stochastic frontiers and neoclassical duality. Am J Agric Econ 73:421–428

    Article  Google Scholar 

  88. Kumbhakar S, Biswas B, Bailey D (1989) A study of economic efficiency of Utah dairy farmers: a system approach. Rev Econ Stat 71:595–604

    Article  Google Scholar 

  89. Mbaga MD, Romain R, Larue B, Lebel L (2003) Assessing technical efficiency of Quebec dairy farms. Can J Agric Econ 51:121–137. https://doi.org/10.1111/j.1744-7976.2003.tb00169.x

    Article  Google Scholar 

  90. Balcombe K, Fraser I, Kim JH (2006) Estimating technical efficiency of Australian dairy farms using alternative frontier methodologies. Appl Econ 38:2221–2236. https://doi.org/10.1080/00036840500427445

    Article  Google Scholar 

  91. Heshmati A, Kumbhakar SC (1994) Farm heterogeneity and technical efficiency: some results from Swedish dairy farms. J Prod Anal 5:45–61. https://doi.org/10.1007/BF01073597

    Article  Google Scholar 

  92. Kumbhakar SC, Heshmati A (1995) Efficiency measurement in Swedish dairy farms: an application of rotating panel data, 1976–88. Am J Agric Econ 77:660–674. https://doi.org/10.2307/1243233

    Article  Google Scholar 

  93. Cuesta RA (2000) A production model with firm-specific temporal variation in technical inefficiency: with application to Spanish dairy farms. J Prod Anal 13:139–158

    Article  Google Scholar 

  94. Kompas T, Che TN (2006) Technology choice and efficiency on Australian dairy farms*. Aust J Agric Res Econ 50:65–83. https://doi.org/10.1111/j.1467-8489.2006.00314.x

    Article  Google Scholar 

  95. Abdulai A, Tietje H (2007) Estimating technical efficiency under unobserved heterogeneity with stochastic frontier models: application to northern German dairy farms. Eur Rev Agric Econ 34:393–416. https://doi.org/10.1093/erae/jbm023

    Article  Google Scholar 

  96. Mundlak Y (1978) On the pooling of time series and cross section data. Econometrica 46:69–85. https://doi.org/10.2307/1913646

    Article  Google Scholar 

  97. Kumbhakar SC, Tsionas EG (2008) Estimation of input-oriented technical efficiency using a nonhomogeneous stochastic production frontier model. Agric Econ 38:99–108. https://doi.org/10.1111/j.1574-0862.2007.00285.x

    Article  Google Scholar 

  98. Rasmussen S (2010) Scale efficiency in Danish agriculture: an input distance-function approach. Eur Rev Agric Econ 37:335–367. https://doi.org/10.1093/erae/jbq023

    Article  Google Scholar 

  99. Tsionas EG, Kumbhakar SC, Malikov E (2015) Estimation of input distance functions: a system approach. Am J Agric Econ 97:1478–1493. https://doi.org/10.1093/ajae/aav012

    Article  Google Scholar 

  100. Silva E, Stefanou SE (2007) Dynamic efficiency measurement: theory and application. Am J Agric Econ 89:398–419. https://doi.org/10.1111/j.1467-8276.2007.00999.x

    Article  Google Scholar 

  101. Serra T, Lansink AO, Stefanou SE (2011) Measurement of dynamic efficiency: a directional distance function parametric approach. Am J Agric Econ 93:756–767. https://doi.org/10.1093/ajae/aaq175

    Article  Google Scholar 

  102. Emvalomatis G, Stefanou SE, Lansink AO (2011) A reduced-form model for dynamic efficiency measurement: application to dairy farms in Germany and the Netherlands. Am J Agric Econ 93:161–174. https://doi.org/10.1093/ajae/aaq125

    Article  Google Scholar 

  103. Skevas I, Emvalomatis G, Brümmer B (2018) Heterogeneity of long-run technical efficiency of German dairy farms: a bayesian approach. J Agric Econ 69:58–75. https://doi.org/10.1111/1477-9552.12231

    Article  Google Scholar 

  104. Battese GE, Rao DSP, O’Donnell CJ (2004) A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies. J Prod Anal 21:91–103. https://doi.org/10.1023/B:PROD.0000012454.06094.29

    Article  Google Scholar 

  105. O’Donnell CJ, Rao DSP, Battese GE (2008) Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empir Econ 34:231–255. https://doi.org/10.1007/s00181-007-0119-4

    Article  Google Scholar 

  106. Huang CJ, Huang T-H, Liu N-H (2014) A new approach to estimating the metafrontier production function based on a stochastic frontier framework. J Prod Anal 42:241–254. https://doi.org/10.1007/s11123-014-0402-2

    Article  Google Scholar 

  107. Amsler C, O’Donnell CJ, Schmidt P (2017) Stochastic metafrontiers. Econ Rev 36:1007–1020. https://doi.org/10.1080/07474938.2017.1308345

    Article  Google Scholar 

  108. Amsler C, Chen YY, Schmidt P, Wang HJ (2020) A hierarchical panel data stochastic frontier model for the estimation of stochastic metafrontiers. Empir Econ. https://doi.org/10.1007/s00181-020-01929-w

  109. Moreira VH, Bravo-Ureta BE (2010) Technical efficiency and metatechnology ratios for dairy farms in three southern cone countries: a stochastic meta-frontier model. J Prod Anal 33:33–45. https://doi.org/10.1007/s11123-009-0144-8

    Article  Google Scholar 

  110. Latruffe L, Fogarasi J, Desjeux Y (2012) Efficiency, productivity and technology comparison for farms in central and Western Europe: the case of field crop and dairy farming in Hungary and France. Econ Syst 36:264–278. https://doi.org/10.1016/j.ecosys.2011.07.002

    Article  Google Scholar 

  111. Jiang N, Sharp B (2015) Technical efficiency and technological gap of New Zealand dairy farms: a stochastic meta-frontier model. J Prod Anal 44:39–49. https://doi.org/10.1007/s11123-015-0429-z

    Article  Google Scholar 

  112. Alem H, Lien G, Hardaker JB, Guttormsen A (2019) Regional differences in technical efficiency and technological gap of Norwegian dairy farms: a stochastic meta-frontier model. Appl Econ 51:409–421. https://doi.org/10.1080/00036846.2018.1502867

    Article  Google Scholar 

  113. Orea L, Kumbhakar SC (2004) Efficiency measurement using a latent class stochastic frontier model. Empir Econ 29:169–183. https://doi.org/10.1007/s00181-003-0184-2

    Article  Google Scholar 

  114. Alvarez A, del Corral J (2010) Identifying different technologies using a latent class model: extensive versus intensive dairy farms. Eur Rev Agric Econ 37:231–250. https://doi.org/10.1093/erae/jbq015

    Article  Google Scholar 

  115. Orea L, Perez JA, Roibas D (2015) Evaluating the double effect of land fragmentation on technology choice and dairy farm productivity: a latent class model approach. Land Use Policy 45:189–198. https://doi.org/10.1016/j.landusepol.2015.01.016

    Article  Google Scholar 

  116. Bravo-Ureta BE, Solís D, Moreira López VH, Maripani JF, Thiam A, Rivas T (2007) Technical efficiency in farming: a meta-regression analysis. J Prod Anal 27:57–72. https://doi.org/10.1007/s11123-006-0025-3

    Article  Google Scholar 

  117. Moreira López VH, Bravo-Ureta BE (2009) A study of dairy farm technical efficiency using meta-regression: an international perspective. Chilean J Agric Res 69:214–223. https://doi.org/10.4067/S0718-58392009000200011

    Article  Google Scholar 

  118. Ogundari K (2014) The paradigm of agricultural efficiency and its implication on food security in Africa: what does meta-analysis reveal? World Dev 64:690–702. https://doi.org/10.1016/j.worlddev.2014.07.005

    Article  Google Scholar 

  119. Caves DW, Christensen LR, Diewert WE (1982) Multilateral comparisons of output, input, and productivity using superlative index numbers. Econ J 92:73–86. https://doi.org/10.2307/2232257

    Article  Google Scholar 

  120. Diewert WE (1976) Exact and superlative index numbers. J Econ 4:115–145. https://doi.org/10.1016/0304-4076(76)90009-9

    Article  Google Scholar 

  121. Caves DW, Christensen LR, Diewert WE (1982) The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica 50:1393–1414. https://doi.org/10.2307/1913388

    Article  Google Scholar 

  122. Nishimizu M, Page JM (1982) Total factor productivity growth, technological progress and technical efficiency change: dimensions of productivity change in Yugoslavia, 1965–78. Econ J 92:920–936. https://doi.org/10.2307/2232675

    Article  Google Scholar 

  123. Färe R, Grosskopf S, Norris M, Zhang Z (1994) Productivity growth, technical progress, and efficiency change in industrialized countries. Am Econ Rev 84:66–83

    Google Scholar 

  124. Kumbhakar SC, Lovell C (2000) Stochastic frontier analysis. Cambridge University Press

    Book  Google Scholar 

  125. O’Donnell CJ (2016) Using information about technologies, markets and firm behaviour to decompose a proper productivity index. J Econ 190:328–340. https://doi.org/10.1016/j.jeconom.2015.06.009

    Article  Google Scholar 

  126. O’Donnell C (2018) Productivity and efficiency analysis: an economic approach to measuring and explaining managerial performance. Springer

    Book  Google Scholar 

  127. Ahmad M, Bravo-Ureta BE (1995) An econometric decomposition of dairy output growth. Am J Agric Econ 77:914–921. https://doi.org/10.2307/1243814

    Article  Google Scholar 

  128. Weersink A, Tauer LW (1990) Regional and temporal impacts of technical change in the U.S. dairy sector. Am J Agric Econ 72:923–934. https://doi.org/10.2307/1242624

    Article  Google Scholar 

  129. Weersink A, Tauer LW (1991) Causality between dairy farm size and productivity. Am J Agric Econ 73:1138–1145. https://doi.org/10.2307/1242442

    Article  Google Scholar 

  130. Brümmer B, Glauben T, Thijssen G (2002) Decomposition of productivity growth using distance functions: the case of dairy farms in three European countries. Am J Agric Econ 84:628–644. https://doi.org/10.1111/1467-8276.00324

    Article  Google Scholar 

  131. Newman C, Matthews A (2006) The productivity performance of Irish dairy farms 1984–2000: a multiple output distance function approach. J Prod Anal 26:191–205. https://doi.org/10.1007/s11123-006-0013-7

    Article  Google Scholar 

  132. Emvalomatis G (2012) Productivity growth in German dairy farming using a flexible modelling approach: TFP growth in German dairy farming. J Agric Econ 63:83–101. https://doi.org/10.1111/j.1477-9552.2011.00312.x

    Article  Google Scholar 

  133. Cechura L, Grau A, Hockmann H, Kroupova Z, Levkovych I (2017) Catching up or falling behind in European agriculture: the case of milk production. J Agric Econ 68:206–227

    Article  Google Scholar 

  134. Sipiläinen T, Kumbhakar SC, Lien G (2014) Performance of dairy farms in Finland and Norway from 1991 to 2008. Eur Rev Agric Econ 41:63–86. https://doi.org/10.1093/erae/jbt012

    Article  Google Scholar 

  135. Sauer J, Latacz-Lohmann U (2015) Investment, technical change and efficiency: empirical evidence from German dairy production. Eur Rev Agric Econ 42:151–175. https://doi.org/10.1093/erae/jbu015

    Article  Google Scholar 

  136. Singbo A, Larue B (2016) Scale economies, technical efficiency, and the sources of total factor productivity growth of Quebec dairy farms. Can J Agric Econ/Revue canadienne d’agroeconomie 64:339–363. https://doi.org/10.1111/cjag.12077

    Article  Google Scholar 

  137. Moreira VH, Bravo-Ureta BE (2016) Total factor productivity change in dairy farming: empirical evidence from southern Chile. J Dairy Sci 99:8356–8364. https://doi.org/10.3168/jds.2016-11055

    Article  Google Scholar 

  138. Tauer L (1998) Productivity of New York dairy farms measured by nonparametric Malmquist indices. J Agric Econ 49:234–249

    Article  Google Scholar 

  139. Jang H, Du X (2019) Evolving techniques in production function identification illustrated in the case of the US dairy. Appl Econ 51:1463–1477

    Article  Google Scholar 

  140. Chambers RG (1988) Applied production analysis: a dual approach. Cambridge University Press

    Google Scholar 

  141. Panzar JC, Willig RD (1981) Economies of scope. Am Econ Rev 71:268–272

    Google Scholar 

  142. Orea L, Roibás D, Wall A (2004) Choosing the technical efficiency orientation to analyze firms’ technology: a model selection test approach. J Prod Anal 22:51–71. https://doi.org/10.1023/B:PROD.0000034691.84524.b2

    Article  Google Scholar 

  143. Lund M, Jacobsen BH, Hansen LCE (1993) Reducing non-allocative costs on Danish dairy farms: application of non-parametric methods. Eur Rev Agric Econ 20:327–341. https://doi.org/10.1093/erae/20.3.327

    Article  Google Scholar 

  144. Cocchi H, Bravo-Ureta BE, Cooke S (1998) A growth accounting analysis of cost efficiency in milk production for six northern states in the United States. Can J Agric Econ 46:287–296. https://doi.org/10.1111/j.1744-7976.1998.tb00086.x

    Article  Google Scholar 

  145. Maietta OW (2000) The decomposition of cost inefficiency into technical and allocative components with panel data of Italian dairy farms. Eur Rev Agric Econ 27:473–495

    Article  Google Scholar 

  146. Hailu G, Jeffrey S, Unterschultz J (2005) Cost efficiency for Alberta and Ontario dairy farms: an interregional comparison. Can J Agric Econ 53:141–160. https://doi.org/10.1111/j.1744-7976.2005.00314.x

    Article  Google Scholar 

  147. Alvarez A, del Corral J, Solís D, Pérez JA (2008) Does intensification improve the economic efficiency of dairy farms? J Dairy Sci 91:3693–3698. https://doi.org/10.3168/jds.2008-1123

    Article  Google Scholar 

  148. Carletto C, Savastano S, Zezza A (2013) Fact or artifact: the impact of measurement errors on the farm size–productivity relationship. J Dev Econ 103:254–261. https://doi.org/10.1016/j.jdeveco.2013.03.004

    Article  Google Scholar 

  149. Rada NE, Fuglie KO (2019) New perspectives on farm size and productivity. Food Policy 84:147–152. https://doi.org/10.1016/j.foodpol.2018.03.015

    Article  Google Scholar 

  150. Matulich SC (1978) Efficiencies in large-scale dairying: incentives for future structural change. Am J Agric Econ 60:642–647. https://doi.org/10.2307/1240249

    Article  Google Scholar 

  151. Dawson P, Hubbard L (1987) Management and size economies in the England and Wales dairy sector. J Agric Econ 38:27–38

    Article  Google Scholar 

  152. Alvarez A, Arias C (2003) Diseconomies of size with fixed managerial ability. Am J Agric Econ 85:134–142. https://doi.org/10.1111/1467-8276.00108

    Article  Google Scholar 

  153. Mukhtar SM, Dawson PJ (1990) Herd size and unit costs of production in the England and Wales dairy sector. J Agric Econ 41:9–20. https://doi.org/10.1111/j.1477-9552.1990.tb00615.x

    Article  Google Scholar 

  154. Moschini G (1990) Nonparametric and semiparametric estimation: an analysis of multiproduct returns to scale. Am J Agric Econ 72:589–596. https://doi.org/10.2307/1243028

    Article  Google Scholar 

  155. Løyland K, Ringstad V (2001) Gains and structural effects of exploiting scale-economies in Norwegian dairy production. Agric Econ 24:149–166. https://doi.org/10.1111/j.1574-0862.2001.tb00020.x

    Article  Google Scholar 

  156. Mosheim R, Lovell CAK (2009) Scale economies and inefficiency of U.S. dairy farms. Am J Agric Econ 91:777–794. https://doi.org/10.1111/j.1467-8276.2009.01269.x

    Article  Google Scholar 

  157. Fernandez-Cornejo J, Gempesaw CM, Elterich JG, Stefanou SE (1992) Dynamic measures of scope and scale economies: an application to German agriculture. Am J Agric Econ 74:329–342. https://doi.org/10.2307/1242487

    Article  Google Scholar 

  158. Wieck C, Heckelei T (2007) Determinants, differentiation, and development of short-term marginal costs in dairy production: an empirical analysis for selected regions of the EU. Agric Econ 36:203–220. https://doi.org/10.1111/j.1574-0862.2007.00199.x

    Article  Google Scholar 

  159. Alem H, Lien G, Kumbhakar SC, Hardaker JB (2019) Are diversification and structural change good policy? An empirical analysis of Norwegian agriculture. J Agric Appl Econ 51:1–26. https://doi.org/10.1017/aae.2018.17

    Article  Google Scholar 

  160. Silva E, Stefanou S (2003) Nonparametric dynamic production analysis and the theory of cost. J Prod Anal 19:5–32

    Article  Google Scholar 

  161. Tauer LW (1995) Do New York dairy farmers maximize profits or minimize costs? Am J Agric Econ 77:421–429. https://doi.org/10.2307/1243551

    Article  Google Scholar 

  162. Stefanou SE, Saxena S (1988) Education, experience, and allocative efficiency: a dual approach. Am J Agric Econ 70:338–345. https://doi.org/10.2307/1242074

    Article  Google Scholar 

  163. Griliches Z (1957) Hybrid corn: an exploration in the economics of technological change. Econometrica 25:501–522. https://doi.org/10.2307/1905380

    Article  Google Scholar 

  164. Giesen GWJ, Oskam AJ, Berentsen PBM (1989) Expected economic effects of BST in the Netherlands. Agric Econ 3:231–248

    Article  Google Scholar 

  165. Marion BW, Wills RL (1990) A prospective assessment of the impacts of bovine somatotropin: a case study of Wisconsin. Am J Agric Econ 72:326–336. https://doi.org/10.2307/1242336

    Article  Google Scholar 

  166. Stefanides Z, Tauer LW (1999) The empirical impact of bovine somatotropin on a group of New York dairy farms. Am J Agric Econ 81:95–102. https://doi.org/10.2307/1244453

    Article  Google Scholar 

  167. Foltz JD, Chang H (2002) The adoption and profitability of rbST on Connecticut dairy farms. Am J Agric Econ 84:1021–1032. https://doi.org/10.1111/1467-8276.00364

    Article  Google Scholar 

  168. Tomaszewski MA, Asseldonk MAPM, Dijkhuizen AA, Huirne RBM (2000) Determining farm effects attributable to the introduction and use of a dairy management information system in the Netherlands. Agric Econ 23:79–86. https://doi.org/10.1111/j.1574-0862.2000.tb00085.x

    Article  Google Scholar 

  169. Roibas D, Alvarez A (2010) Impact of genetic progress on the profits of dairy farmers. J Dairy Sci 93:4366–4373. https://doi.org/10.3168/jds.2010-3135

    Article  Google Scholar 

  170. Atsbeha DM, Kristofersson D, Rickertsen K (2012) Animal breeding and productivity growth of dairy farms. Am J Agric Econ 94:996–1012. https://doi.org/10.1093/ajae/aas033

    Article  Google Scholar 

  171. Whitt CE, Tauer LW, Huson H (2019) Bull efficiency using dairy genetic traits. PLoS One 14:1–14. https://doi.org/10.1371/journal.pone.0223436

    Article  Google Scholar 

  172. Pérez-Méndez JA, Roibás D, Wall A (2020) Somatic cell counts, reproduction indicators, and technical efficiency in milk production: a stochastic frontier analysis for Spanish dairy farms. J Dairy Sci 103:7141–7154. https://doi.org/10.3168/jds.2019-17146

    Article  Google Scholar 

  173. Kumbhakar SC, Tsionas EG, Sipiläinen T (2009) Joint estimation of technology choice and technical efficiency: an application to organic and conventional dairy farming. J Prod Anal 31:151–161. https://doi.org/10.1007/s11123-008-0081-y

    Article  Google Scholar 

  174. Mayen CD, Balagtas JV, Alexander CE (2010) Technology adoption and technical efficiency: organic and conventional dairy farms in the United States. Am J Agric Econ 92:181–195. https://doi.org/10.1093/ajae/aap018

    Article  Google Scholar 

  175. Nehring R, Gillespie J, Sandretto C, Hallahan C (2009) Small U.S. dairy farms: can they compete? Agric Econ 40:817–825. https://doi.org/10.1111/j.1574-0862.2009.00418.x

    Article  Google Scholar 

  176. Ma W, Bicknell K, Renwick A (2019) Feed use intensification and technical efficiency of dairy farms in New Zealand. Aust J Agric Resour Econ 63:20–38. https://doi.org/10.1111/1467-8489.12283

    Article  Google Scholar 

  177. Levins RA (1982) Price specification in milk supply response analysis. Am J Agric Econ 64:286–288. https://doi.org/10.2307/1241137

    Article  Google Scholar 

  178. Nerlove M (1956) Estimates of the elasticities of supply of selected agricultural commodities. J Farm Econ 38:496–509. https://doi.org/10.2307/1234389

    Article  Google Scholar 

  179. Buckwell A (1984) Herd structure and milk supply response. J Agric Econ 35:341–353

    Article  Google Scholar 

  180. Kislev Y, Peterson W (1982) Prices, technology, and farm size. J Polit Econ 90:578–595. https://doi.org/10.1086/261075

    Article  Google Scholar 

  181. Howard WH, Shumway CR (1988) Dynamic adjustment in the U.S. dairy industry. Am J Agric Econ 70:837–847. https://doi.org/10.2307/1241925

    Article  Google Scholar 

  182. Chavas J, Klemme RM (1986) Aggregate milk supply response and investment behavior on U.S. dairy farms. Am J Agric Econ 68:55–66. https://doi.org/10.2307/1241649

    Article  Google Scholar 

  183. Chavas J-P, Kraus AF (1990) Population dynamics and milk supply response in the U.S. lake states. J Agric Econ 41:75–84. https://doi.org/10.1111/j.1477-9552.1990.tb00620.x

    Article  Google Scholar 

  184. Adelaja AO (1991) Price changes, supply elasticities, industry organization, and dairy output distribution. Am J Agric Econ 73:89–102. https://doi.org/10.2307/1242886

    Article  Google Scholar 

  185. Bozic M, Kanter CA, Gould BW (2012) Tracing the evolution of the aggregate U.S. milk supply elasticity using a herd dynamics model. Agric Econ 43:515–530. https://doi.org/10.1111/j.1574-0862.2012.00600.x

    Article  Google Scholar 

  186. Thijssen G (1994) Supply response and dynamic factor demand of Dutch dairy farms. Eur Rev Agric Econ 21:241–258. https://doi.org/10.1093/erae/21.2.241

    Article  Google Scholar 

  187. Quiroga R, Bravo-Ureta B (1992) Short- and long-run adjustments in dairy production: a profit function analysis. Appl Econ 24:607–616

    Article  Google Scholar 

  188. Blayney DP, Mittelhammer RC (1990) Decomposition of milk supply response into technology and price-induced effects. Am J Agric Econ 72:864–872. https://doi.org/10.2307/1242618

    Article  Google Scholar 

  189. Munshi K, Parikh K (1994) Milk supply behavior in India: data integration, estimation and implications for dairy development. J Dev Econ 45:201–223

    Article  Google Scholar 

  190. Stefanou SE, Fernadez-Cornejo J, Gempesaw CM, Elterich JG (1992) Dynamic structure of production under a quota: the case of milk production in the Federal Republic of Germany. Eur Rev Agric Econ 19:283–299. https://doi.org/10.1093/erae/19.3.283

    Article  Google Scholar 

  191. Boots M, Lansink AO, Peerlings J (1997) Efficiency loss due to distortions in Dutch milk quota trade. Eur Rev Agric Econ 24:31–46. https://doi.org/10.1093/erae/24.1.31

    Article  Google Scholar 

  192. Sauer J (2010) Deregulation and dairy production systems: a Bayesian distance function approach. J Prod Anal 34:213–237. https://doi.org/10.1007/s11123-010-0179-x

    Article  Google Scholar 

  193. Colman D, Burton M, Rigby D, Franks J (2002) Structural change and policy reform in the UK dairy sector. J Agric Econ 53:645–663. https://doi.org/10.1111/j.1477-9552.2002.tb00042.x

    Article  Google Scholar 

  194. Pierani P, Rizzi PL (2003) Technology and efficiency in a panel of Italian dairy farms: an SGM restricted cost function approach. Agric Econ 29:195–209. https://doi.org/10.1111/j.1574-0862.2003.tb00157.x

    Article  Google Scholar 

  195. Alvarez A, Arias C, Orea L (2006) Explaining differences in milk quota values: the role of economic efficiency. Am J Agric Econ 88:182–193. https://doi.org/10.1111/j.1467-8276.2006.00846.x

    Article  Google Scholar 

  196. Kumbhakar SC, Lien G, Flaten O, Tveterås R (2008) Impacts of Norwegian milk quotas on output growth: a modified distance function approach. J Agric Econ 59:350–369. https://doi.org/10.1111/j.1477-9552.2008.00154.x

    Article  Google Scholar 

  197. Ang F, Lansink AO (2018) Decomposing dynamic profit inefficiency of Belgian dairy farms. Eur Rev Agric Econ 45:81–99

    Article  Google Scholar 

  198. Henry de Frahan B, Baudry A, De Blander R, Polome P, Howitt R (2011) Dairy farms without quotas in Belgium: estimation and simulation with a flexible cost function. Eur Rev Agric Econ 38:469–495. https://doi.org/10.1093/erae/jbr013

    Article  Google Scholar 

  199. Latruffe L, Bravo-Ureta BE, Carpentier A, Desjeux Y, Moreira VH (2017) Subsidies and technical efficiency in agriculture: evidence from European dairy farms. Am J Agric Econ 99:783–799. https://doi.org/10.1093/ajae/aaw077

    Article  Google Scholar 

  200. Frick F, Sauer J (2018) Deregulation and productivity: empirical evidence on dairy production. Am J Agric Econ 100:354–378

    Article  Google Scholar 

  201. Bezlepkina IV, Lansink AGJMO, Oskam AJ (2005) Effects of subsidies in Russian dairy farming. Agric Econ 33:277–288. https://doi.org/10.1111/j.1574-0864.2005.00067.x

    Article  Google Scholar 

  202. Slade P, Hailu G (2016) Efficiency and regulation: a comparison of dairy farms in Ontario and New York state. J Prod Anal 45:103–115. https://doi.org/10.1007/s11123-015-0456-9

    Article  Google Scholar 

  203. Larue B, Singbo A, Pouliot S (2017) Production rigidity, input lumpiness, efficiency, and the technological hurdle of Quebec dairy farms. Can J Agric Econ/Revue canadienne d’agroeconomie 65:613–641. https://doi.org/10.1111/cjag.12156

    Article  Google Scholar 

  204. Komaki T, Penzer J (2005) Estimation of time-varying price elasticity in 1970-1997 Japanese raw milk supply by structural time-series model. Agric Econ 32:1–14. https://doi.org/10.1111/j.0169-5150.2005.00001.x

    Article  Google Scholar 

  205. Moschini G, Hennessy D (2001) Uncertainty, risk aversion, and risk management for agricultural producers. In: Gardner B, Rausser G (eds) Handbook of agricultural economics. Elsevier Science, Amsterdam

    Google Scholar 

  206. Finger R, Dalhaus T, Allendorf J, Hirsch S (2018) Determinants of downside risk exposure of dairy farms. Eur Rev Agric Econ 45:641–674. https://doi.org/10.1093/erae/jby012

    Article  Google Scholar 

  207. Antle JM, Goodger WJ (1984) Measuring stochastic technology: the case of Tulare milk production. Am J Agric Econ 66:342–350. https://doi.org/10.2307/1240801

    Article  Google Scholar 

  208. Just R, Pope R (1978) Stochastic specification of production functions and economic implications. J Econ 7:67–86

    Article  Google Scholar 

  209. Antle J (1983) Testing the stochastic structure of production: a flexible moment-based approach. J Bus Econ Stat 1:192–201

    Google Scholar 

  210. Chambers RG, Quiggin J (2000) Uncertainty, production, choice, and agency: the state-contingent approach. Cambridge University Press

    Google Scholar 

  211. O’Donnell CJ, Griffiths WE (2006) Estimating state-contingent production frontiers. Am J Agric Econ 88:249–266. https://doi.org/10.1111/j.1467-8276.2006.00851.x

    Article  Google Scholar 

  212. Tveteras R, Flaten O, Lien G (2011) Production risk in multi-output industries: estimates from Norwegian dairy farms. Appl Econ 43:4403–4414. https://doi.org/10.1080/00036846.2010.491461

    Article  Google Scholar 

  213. Orea L, Wall A (2012) Productivity and producer welfare in the presence of production risk: productivity and producer welfare. J Agric Econ 63:102–118. https://doi.org/10.1111/j.1477-9552.2011.00320.x

    Article  Google Scholar 

  214. Lien G, Kumbhakar S, Hardaker J (2017) Accounting for risk in productivity analysis: an application to Norwegian dairy farming. J Prod Anal 47:247–257

    Article  Google Scholar 

  215. Melhim A, Shumway CR (2011) Enterprise diversification in US dairy: impact of risk preferences on scale and scope economies. Appl Econ 43:3849–3862. https://doi.org/10.1080/00036841003724478

    Article  Google Scholar 

  216. Saha A (1997) Risk preference estimation in the nonlinear mean standard deviation approach. Econ Inq 35:770–782. https://doi.org/10.1111/j.1465-7295.1997.tb01963.x

    Article  Google Scholar 

  217. Pieralli S, Hüttel S, Odening M (2017) Abandonment of milk production under uncertainty and inefficiency: the case of western German farms. Eur Rev Agric Econ 44:425–454

    Article  Google Scholar 

  218. Mallawaarachchi T, Nauges C, Sanders O, Quiggin J (2017) State-contingent analysis of farmers’ response to weather variability: irrigated dairy farming in the Murray Valley, Australia. Aust J Agric Resour Econ 61:36–55. https://doi.org/10.1111/1467-8489.12193

    Article  Google Scholar 

  219. Mukherjee D, Bravo-Ureta BE, De Vries A (2013) Dairy productivity and climatic conditions: econometric evidence from South-eastern United States: impact of heat stress on dairy productivity. Aust J Agric Resour Econ 57:123–140. https://doi.org/10.1111/j.1467-8489.2012.00603.x

    Article  Google Scholar 

  220. Key N, Sneeringer S (2014) Potential effects of climate change on the productivity of U.S. dairies. Am J Agric Econ 96:1136–1156. https://doi.org/10.1093/ajae/aau002

    Article  Google Scholar 

  221. Perez-Mendez JA, Roibas D, Wall A (2019) The influence of weather conditions on dairy production. Agric Econ 50:165–175

    Article  Google Scholar 

  222. Qi L, Bravo-Ureta BE, Cabrera VE (2015) From cold to hot: climatic effects and productivity in Wisconsin dairy farms. J Dairy Sci 98:8664–8677. https://doi.org/10.3168/jds.2015-9536

    Article  Google Scholar 

  223. Njuki E, Bravo-Ureta BE, Cabrera VE (2020) Climatic effects and total factor productivity: econometric evidence for Wisconsin dairy farms. Eur Rev Agric Econ 47:1276–1301. https://doi.org/10.1093/erae/jbz046

    Article  Google Scholar 

  224. Dawkins MS (2017) Animal welfare and efficient farming: is conflict inevitable? Anim Prod Sci 57:201–208. https://doi.org/10.1071/AN15383

    Article  Google Scholar 

  225. Chi J, Weersink A, Van Leeuwen JA, Keefe GP (2002) The economics of controlling infectious diseases on dairy farms. Can J Agric Econ 50:237–256. https://doi.org/10.1111/j.1744-7976.2002.tb00335.x

    Article  Google Scholar 

  226. Gunn KM, Holly MA, Veith TL, Buda AR, Prasad R, Rotz CA, Soder KJ, Stoner AMK (2019) Projected heat stress challenges and abatement opportunities for U.S. milk production. PLoS One 14:1–21. https://doi.org/10.1371/journal.pone.0214665

    Article  Google Scholar 

  227. Lawson LG, Agger JF, Lund M, Coelli T (2004) Lameness, metabolic and digestive disorders, and technical efficiency in Danish dairy herds: a stochastic frontier production function approach. Livest Prod Sci 91:157–172. https://doi.org/10.1016/j.livprodsci.2004.07.016

    Article  Google Scholar 

  228. Hansson H, Öhlmér B (2008) The effect of operational managerial practices on economic, technical and allocative efficiency at Swedish dairy farms. Livest Sci 118:34–43. https://doi.org/10.1016/j.livsci.2008.01.013

    Article  Google Scholar 

  229. Hansson H, Szczensa-Rundberg M, Nielsen C (2011) Which preventive measures against mastitis can increase the technical efficiency of dairy farms? Animal 5:632–640. https://doi.org/10.1017/S1751731110002247

    Article  Google Scholar 

  230. Barnes AP, Rutherford KMD, Langford FM, Haskell MJ (2011) The effect of lameness prevalence on technical efficiency at the dairy farm level: an adjusted data envelopment analysis approach. J Dairy Sci 94:5449–5457. https://doi.org/10.3168/jds.2011-4262

    Article  Google Scholar 

  231. Reinhard S, Lovell CAK, Thijssen G (1999) Econometric estimation of technical and environmental efficiency: an application to Dutch dairy farms. Am J Agric Econ 81:44–60. https://doi.org/10.2307/1244449

    Article  Google Scholar 

  232. Reinhard S, Thijssen G (2000) Nitrogen efficiency of Dutch dairy farms: a shadow cost system approach. Eur Rev Agric Econ 27:167–186

    Article  Google Scholar 

  233. Shortall OK, Barnes AP (2013) Greenhouse gas emissions and the technical efficiency of dairy farmers. Ecol Indic 29:478–488. https://doi.org/10.1016/j.ecolind.2013.01.022

    Article  Google Scholar 

  234. Pérez Urdiales M, Lansink AO, Wall A (2016) Eco-efficiency among dairy farmers: the importance of socio-economic characteristics and farmer attitudes. Environ Resour Econ 64:559–574. https://doi.org/10.1007/s10640-015-9885-1

    Article  Google Scholar 

  235. Peerlings J, Polman N (2004) Wildlife and landscape services production in Dutch dairy farming; jointness and transaction costs. Eur Rev Agric Econ 31:427–449. https://doi.org/10.1093/erae/31.4.427

    Article  Google Scholar 

  236. Gullstrand J, De Blander R, Waldo S (2014) The influence of biodiversity provision on the cost structure of Swedish dairy farming. J Agric Econ 65:87–111. https://doi.org/10.1111/1477-9552.12028

    Article  Google Scholar 

  237. Areal FJ, Tiffin R, Balcombe KG (2012) Provision of environmental output within a multi-output distance function approach. Ecol Econ 78:47–54. https://doi.org/10.1016/j.ecolecon.2012.03.011

    Article  Google Scholar 

  238. Njuki E, Bravo-Ureta BE (2015) The economic costs of environmental regulation in U.S. dairy farming: a directional distance function approach. Am J Agric Econ 97:1087–1106. https://doi.org/10.1093/ajae/aav007

    Article  Google Scholar 

  239. Njuki E, Bravo-Ureta BE, Mukherjee D (2016) The good and the bad: environmental efficiency in Northeastern U.S. dairy farming. Agric Resour Econ Rev 45:22–43. https://doi.org/10.1017/age.2016.1

    Article  Google Scholar 

  240. Isik M (2004) Environmental regulation and the spatial structure of the U.S. dairy sector. Am J Agric Econ 86:949–962. https://doi.org/10.1111/j.0002-9092.2004.00645.x

    Article  Google Scholar 

  241. Samson GS, Gardebroek C, Jongeneel RA (2017) Analysing trade-offs between milk, feed and manure production on Dutch dairy farms. Eur Rev Agric Econ 44:475–498. https://doi.org/10.1093/erae/jbw025

    Article  Google Scholar 

  242. Zhang W (2018) Costs of a practice-based air quality regulation: dairy farms in the San Joaquin Valley. Am J Agric Econ 100:762–785. https://doi.org/10.1093/ajae/aax085

    Article  Google Scholar 

  243. von Keyserlingk MAG, Martin NP, Kebreab E, Knowlton KF, Grant RJ, Stephenson M, Sniffen CJ, Harner JP, Wright AD, Smith SI (2013) Invited review: sustainability of the US dairy industry. J Dairy Sci 96:5405–5425. https://doi.org/10.3168/jds.2012-6354

    Article  Google Scholar 

  244. Hemme T, Otte J (2010) Status and prospects for smallholder milk production: a global perspective. Food and Agriculture Organization of the United Nations (FAO)

    Google Scholar 

Download references

Acknowledgments

Boris E. Bravo-Ureta acknowledges partial support from USDA-NIFA Grant #2016-67024-24760. Alan Wall is grateful for support from the Spanish Ministry of Economics, Industry and Competitiveness grant ECO2017-85788-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris E. Bravo-Ureta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bravo-Ureta, B.E., Wall, A., Neubauer, F. (2021). Dairy Farming from a Production Economics Perspective: An Overview of the Literature. In: Ray, S.C., Chambers, R.G., Kumbhakar, S.C. (eds) Handbook of Production Economics. Springer, Singapore. https://doi.org/10.1007/978-981-10-3450-3_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3450-3_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3450-3

  • Online ISBN: 978-981-10-3450-3

  • eBook Packages: Springer Reference Economics and FinanceReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics