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Abstract—The failure of complex artificial intelligence (AI)
systems seems ubiquitous. To provide a model to describe these
shortcomings, we define complexity in terms of a system’s sensors
and the number of environments or situations in which it per-
forms. The complexity is not looked at in terms of the difficulty
of design, but in the final performance of the system as a func-
tion of the sensor and environmental count. As the complexity of
AI, or any system, increases linearly the contingencies increase
exponentially and the number of possible design performances
increases as a compound exponential. In this worst case scenario,
the exponential increase in contingencies makes the assessment
of all contingencies difficult and eventually impossible. As the
contingencies grow large, unexpected and undesirable contingen-
cies are all expected to increase in number. This, the worst case
scenario, is highly connected, or conjunctive. Contingencies grow
linearly with respect to complexity for systems loosely connected,
or disjunctive. Mitigation of unexpected outcomes in either case
can be accomplished using tools such as design expertise and
iterative redesign informed by intelligent testing.

Index Terms—Artificial intelligence, complexity theory,
machine intelligence, product safety engineering, robustness,
self-driving cars, system design, system testing.

I. INTRODUCTION

THE MORE complex a system, the greater number of
performance contingencies. This growth is a concern

requiring serious consideration in the pursuit of artificial gen-
eral intelligence (AGI) [2], [29], [39]. The analysis herein does
not address the goals of AGI research, but rather the difficulty
of achieving them. Any effort at achieving AGI will, by neces-
sity, be complex. Our analysis is applicable to all complex
systems including complex artificial intelligence (AI).

After giving examples of unanticipated contingencies in
complex systems, our analysis shows that a linear increase
in system complexity can give an exponential explosion of
contingencies. Methods to mitigate away from introduction of
unexpected contingencies are then presented.

A. Examples of the Unforeseen

Undesirable and unexpected contingencies have already
been manifest in the deployment of AI systems. Here are some
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examples of unexpected contingencies from complex systems
ranking from the simply curious to the very serious.

1) During IBM Watson’s ultimate win over two human
contestants in the quiz show Jeopardy, a curious thing
happened. A query under the category NAME THE
DECADE was “The first modern crossword is pub-
lished and Oreo cookies are introduced.” A human,
Ken Jennings, was first to hit the buzzer and responded
“What are the 20’s?” The quizmaster, Alex Trebek, ruled
the response incorrect. IBM Watson then buzzed in and
gave the same exact response. “What are the 20’s?” Alex
Trebek responded “No. Ken said that.” The programmers
of IBM Watson had made no provision for Watson to
respond with an answer that had already been declared
incorrect [45], [48]. Watson’s duplicate response was an
unintended contingency of the IBM software.1

2) In 1997 IBM’s Deep Blue beat world champion Gary
Kasparov at chess. One of Deep Blue’s moves was par-
ticularly curious. The unexpected move psychologically
threw Kasparov off his game and he lost. Of the move,
one chess expert said [19]:

“It was an incredibly refined move, of defending
while ahead to cut out any hint of countermoves.”

This comment is akin to a child’s finger painting being
lauded as inspirational modern art. Over a decade after
the match, Murray Campbell, one of the three IBM com-
puter scientists who designed Deep Blue, first confessed
Deep Blue’s move was a fluke—a bug in the code. Deep
Blue was unable to select a move and simply picked one
at random.

“Kasparov had concluded that the counterintuitive
play must be a sign of superior intelligence, he had
never considered that it was simply a bug.”

3) A deep convolutional neural network was trained to
detect wolves. After the trained neural network incor-
rectly classified a husky dog as a wolf, the programmers
did some forensics and discovered there was undesir-
able bias in the training data. The pictures of wolves
all contained snow. The picture of the misclassified dog
also contained snow. In training, the neural network had
learned the presence and absence of snow. The features

1Watson’s mistake was anticipated as a possible AI flaw in 1974. In a major
plot component on the television series The Six Million Dollar Man [47], Steve
Austin, the six million dollar man, suspects a friend has been replaced by a
robot. He asks a question to the suspected imposter and gets an answer. He
then asks the same question, only to get the same answer. The exact repeated
answer fails the Turing test and revealed the answer came from a machine
and not a human.
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of the animals were not considered in the classification
problem [22].

4) An inconvenience for self-driving cars is false classifi-
cation of objects like plastic bags. A stationary plastic
bag can be categorized as a large rock [27] while a
wind-blown plastic bag can be mistaken for a deer [37].
These are unintended contingencies of the self-driving
car’s software.

5) A more serious problem with self-driving cars is fatali-
ties. In 2018, an Uber self-driving car in Tempe, Arizona
struck and killed pedestrian Elaine Herzberg [36]. The
incident was an unintended contingency and preventable.
Steven Shladover, a UC Berkeley research engineer,
noted “I think the sensors on the vehicles should have
seen the pedestrian well in advance.” The death was a
tragic example of the an unintended contingency of a
complex AI system. Unintended contingencies remain
a major obstacle in the development of general (level
5) self-driving cars. Some developers, believing the
problem in insurmountable, have given up [14].

6) During the height of the cold war, the Soviets deployed
a satellite early warning system called Oko to watch
for incoming missiles fired from the United States. On
September 26, 1983, Oko detected incoming missiles.
At a military base outside of Moscow, sirens blared and
the Soviet brass was told by Oko to launch a thermonu-
clear counterstrike. Doing so would result in millions
being killed. The officer in charge, Lieutenant Colonel
Stanislav Petrov, felt something was fishy. After inform-
ing his superiors of his hunch Oko was not operating
correctly, Petrov did not obey the Oko order. Upon fur-
ther investigation, Oko was found to have mistakenly
interpreted the sun reflected off of clouds [45]. There
was no U.S. missile attack. Petrov’s skepticism of Oko’s
alarm may have saved millions of lives.

These examples of unintended contingencies deal with
systems of broad complexity. Narrow AI systems are typically
more error free. Examples of a narrow AI system are anti-
radiation missiles like Israel’s Harpy. The missile is launched
and flies about (loiters) over a predefined kill zone. The mis-
sile can operate autonomously without human oversight. If fuel
gets low, the missile returns home. Alternately, if illuminated
by radar, the anti-radiation missile zeros-in on the location of
radar. The missile follows the radar beam back to its source
and destroys the radar installation [35]. Whether or not one
agrees with the mission of such a system, the anti-radiation
missile is an example of relatively narrow AI that has histor-
ically worked without flaw. There are few if any unforeseen
contingencies in anti-radiation missiles that will distract from
its duties.

We revisit this list of unintended contingencies in
Section IV-A where the cause of each of these events is
categorized in terms of knowability.

B. Measuring Complexity

Complexity can be related to the number of sensors used
in a system and the number of environments or situations in
which the system must operate. We first analyze tightly coupled

systems where sensor readings are combined conjunctively. For
tightly coupled, or conjunctive systems, an increase of either
parameter results in an exponential increase in contingencies.
The tally of all possible design results grows as a compound
exponential, like eex

, with respect to the number of system
sensors and the number of environments or situations in which
the system operates. The contingencies of disjunctive [17], [50],
or loosely coupled systems, grows linearly with respect to
complexity, (see Section VI-D). The number of possible designs
grows exponentially. Hybrid systems composed of a disjunctive
collection of small conjunctive systems lies in between in terms
of contingency count and the total number of possible designs.

II. BACKGROUND

An early effort listing of measures of system complexity was
offered by Lloyd [30] who categorized complexity into three
categories: 1) degree of organization and difficulties of; 2) cre-
ation; and 3) description. Carlson and Doyle [6] introduced
the idea of highly optimized tolerance (HOT). HOT illustrates
the tendency of highly optimized complex systems to perform
their tasks well, but to be sensitive to perturbations in the form
of design flaws and unexpected contingencies. Complexity has
been defined as a function of system’s degrees of freedom [20]
and as a measure of system description [9]. Other work on the
design of complex systems has concentrated on the difficulty
of constructing a system [16], [49].

Our analysis approaches the problem differently.
Complexity is defined by the number of system sensors
and the number of environments or situations in which the
system operates. We are interested neither in the difficulty of
the design of a system nor the degree of creativity required
but rather only in the final design. There is no consideration
given to potential failures within the system. All components
are assumed to operate with no flaws. With no apriori
assumptions, how can the design deviate unacceptably from
its desired function?

Such analysis is in concert with the no free lunch theorems
(NFLTs) [10], [51] where no design expertise or, equivalently,
no bias is assumed in a search process. In such a case, one
search algorithm is shown to be no better on average than
another [33]. In 1980, Mitchell seems to have first recognized
the need for bias in search [38]. More recently the prop-
erty, dubbed conservation of information [11]–[13], [33], has
been further popularized by Schaffer [46] and Wolpert and
MacReady [51].

Our analysis builds on that of Ho et al. [23] who showed
that the analysis akin to the NFLT’s could be applied to ana-
lyze certain complexity and security aspects of system design.
They did so using the fundamental matrix similar in struc-
ture to the matrix used in Wolpert and MacReady’s proof of
the NFLT. We build on the insightful work of Ho et al. to
show the number of possible designs of a conjunctive system
increases as a compound exponential with respect to a linear
increase in complexity. The number of contingencies increases
exponentially with respect to complexity. Unexpected contin-
gencies can be mitigated by the design expertise of the system
designer and repeated design using results from intelligent
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TABLE I
DESIGN PERFORMANCE MATRIX FOR WASHER WITH TWO SENSORS

testing. The increase in contingencies can be so great, however,
that consideration and testing of all cases becomes impossible.

III. DESIGN PERFORMANCE MATRIX

The design performance matrix enumerates all design pos-
sibilities of a system as a function of contingencies.

A. Example

The design performance matrix is best introduced by illus-
tration. Consider the pedagogical example of a clothes washing
machine that operates using only two sensors, namely, load
weight and the dirtiness of the load. The load weight is eas-
ily measured. The dirtiness of the load is measured by the
wash water’s turbidity. This can be done by measuring the
short distance attenuation of a submerged LED light source.
To simplify the illustration, further assume there are only
two readings from each sensor. The load will be either be
“light” or “heavy” and the turbidity either “mild” or “dirty.”
We present these criteria in the spirit of fuzzy linguistic
variables [4], [32], [52] recognizing that in the design, crisp
numeric intervals must be defined for each case. Presentation
using linguistic variables clarifies the presentation.

Binary variables are be assigned to each sensor

weight = (light, heavy) = (0, 1)

turbidity = (mild, dirty) = (0, 1).

The left most column in Table I lists all the sensor reading
possibilities with the first entry denoting weight and the second
turbidity. The contingency x3 = (1, 0) for example indicates
the load is “heavy” and the turbidity “mild.” Let A denote the
set of sensors. We denote the set of all possible sensor readings
in the left most column by X. Since there are |A| = 2 sensors,
there are |X| = 2|A| = 4 total possible sensor combinations
where |X| denotes the cardinality of the set X. The cardinality
|X| is the number of contingencies of the system.

The set of all possible design performance results is denoted
by Y . Each design is denoted by a column in the design
performance matrix. For the washer example in Table I, this
set’s cardinality is |Y| = 16.

A zero in the design performance matrix denotes failure
to achieve pre-established performance criteria for the sensor
reading combinations. An entry of one denotes success.

Consider the matrix row denoted by the sensor reading pair
x2 = (0, 1). This entry means the load is “light” and the tur-
bidity is “dirty.” The design corresponding to the column y7
in the design performance matrix is a one. This means that
the design will work for light, dirty loads. The corresponding
entry for design possibility y8 is a zero meaning the design
does not work for light, muddy loads. In the set of all possible
designs, there is only one design that works for all possible

TABLE II
MATRIX DESCRIPTION OF THE y7 DESIGN IN TABLE I

sensor readings. That is, the design corresponding to y15 where
the column has all ones.

Each column of the design performance matrix can itself
be represented as a matrix. The column under y7 in Table I,
for example, can be written as shown in Table II. Table I
is therefore seen to be a two-dimensional representation of a
three-dimensional tensor [34].

There is not necessarily a single design corresponding
to, say, y7 in Table I. A number of designs can give the
performance of the ones and zeros in the y7 column. Any
washer design, however, will be described by one of the y’s
in Table I when tested. It follows that, even in the absence of
all knowledge about a design, all of the design columns in the
matrix should not be considered equally probable. (Equal prob-
ability columns are an assumption made in the NFLTs [12],
[23], [51].) The goal of the design performance matrix, rather,
is to list all possible designs in the absence of any and all
knowledge about a design.

B. Scaling Generalization

The simple example of the washing machine can be
generalized.

1) Increasing the Sensor Count: Let A denote the set of
sensors

A = {
a1, a2, . . . , a|A|

}
.

For the washing machine example just presented, |A| = 2. A
third washer sensor might indicate whether the wash fabrics
are “light” (0) or “heavy” (1). When added, the number of
sensors is |A| = 3.

If there are |A| sensors each of which is divided into the
two categories of design success or failure, there are

|X| = 2|A|

sensor reading combinations to consider. Then there are

|Y| = 2|X| = 22|A|
(1)

possible designs. For the washer example, |A| = 2, |X| = 4 and
|Y| = 16. The increase scales rapidly. For |A| = 20 sensors,
there are over a million contingencies (|X| = 1048576) and
|Y| = 6.7 × 10315652 possible designs.2

2) Increasing the Number of Design Rankings: Let C
denote the set rankings for each design. For the example in
Table I, the elements in each cell in the design performance
matrix are C = {0, 1} with 0 corresponding to failure and 1
to success. Therefore |C| = 2. The classification of a design
need not be limited to success or failure. Performance on, say,
a scale of one to |C| = 10 corresponds to allowance of each
cell in the design performance matrix to be an integer from 1

2When encountering large numbers of this sort, it is customary to point out
that the number of atoms in the known universe is about 1080.
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TABLE III
MULTIOBJECTIVE OPTIMIZATION EXAMPLE FOR WASHER

to 10. Like a judge ranking Olympic ice skating competitions,
the output of the wash can be ranked on a scale of 1 to 10. The
parameter |C| is the number of ways a design can be judged.
Instead of the design performance matrix corresponding to a
count in base 2, the matrix is now composed on a count in
base 10. As a function of base |C|, the number of possible
designs becomes

|Y| = |C||X| = |C|2|A|
. (2)

Equation (1) is a special case for |C| = 2.
There is a second useful way that the dimension of C is

increased. The design ranking can be used in multiobjective
optimization. The washing machine’s binary ranking in
performance is determined by the cleanliness of the clothes.
“Clean” = 1 and “not clean” = 0. A second criteria can be the
time required to complete the wash. The following variables
are assigned: “sufficiently fast” = 1 and “too slow” = 0. The
possible outcomes can be assigned numbers as illustrated in
Table III. There are |C| = 4 possible outcomes. An outcome
of 2 in the matrix means that the clothes were not clean but
the washing speed was sufficiently fast.

3) Increasing Sensor Reading Partitions: Finally, there can
be more than two partitions for each sensor. For the washer
example, the weight classifications “light” and “heavy” can
be extended to the performance criteria “light,” “medium,”
“heavy,” and “very heavy.” Let S denote the set of the sensor
partitions

S = {
s1, s2, s3, . . . , s|A|

}
.

If sensor a2 corresponds to the weight of the wash, then from
the running example, s2 = 4 when the additional performance
criteria are added. The X column in the design performance
matrix is no longer restricted to binary and can contain non
binary elements like x3 = (3, 0). The number of sensor reading
possibilities, equal to the number of contingencies, is now

|X| =
|A|∏

j=1

sj. (3)

If all sensor partitions are equal (sj = s ∀j), this simplifies to

|X| = s|A|. (4)

In general, the number of design possibilities follows as:

|Y| = |C||X| = |C|
∏|A|

j=1 sj . (5)

The number of design possibilities when sj = s follows
from (4) as:

|Y| = |C||X| = |C|s|A|
. (6)

Equation (2) is a special case for s = 2. The possible designs
therefore increases as a compound exponential with respect to
the number of sensors. Specifically

log |Y| = s|A| log |C|. (7)

a) Images: A simple example with an enormous number
of sensors is images. A small |A| = 100 × 100 image has ten
thousand pixels. Each pixel has 256 gray levels times 3 color
choices, e.g., RGB. That is, s = 256 × 3 = 768. The number
of test scenarios, from (4), is then

|X| = 76810000 = 1028854. (8)

If C = {0, 1} for success and failure, we have, from (6)

|Y| = 2768104 = 101028853

which is an unimaginably large number.

IV. ENVIRONMENTAL AND SITUATION AUGMENTATION

Environmental and situational parameters play a role in
system performance. A clothes washer might perform differ-
ently if the ambient room temperature is “cold” (0), “medium”
(1), or “hot” (2). We can add environmental effects to the
design performance matrix. The sensor vector can be aug-
mented from x1 = (0, 1) to x1 = (0, 1; 2) meaning that the
washer is running in a “hot” environment (with a “light” load
and “dirty” water). The environmental parameters are entered
to the right of the semicolon.

In our use of the term, variations in situations are consid-
ered environmental changes. The choice of detergents in the
washer example might effect the design performance. Each
detergent or detergent type could be another environmental
consideration.

Let E equal the set of environments in which the design
operates

E = {
e1, e2, e3, . . . , e|E|

}
.

Let the set of environment partitions be

T = {
t1, t2, t3, . . . , t|E|

}
.

If, for example, the third environmental parameter is e3 =
ambient temperature, and the temperature is ranked “cold,”
“medium” and “hot,” then t3 = 3 partitions.

The X matrix here is augmented from its original definition
to now include environments. Specifically

X = {A, E} = {
a1, . . . , a|A|, e1, . . . , e|E|

}
.

If there are sensors a1, a2 and a3 (|A| = 3) and environments
e1 and e2 (|E| = 2), then the sensor/environmental count is
five: xn = (s1, s2, s3; t1, t2). The number of contingencies in
general is therefore

|X| =
|E|∏

n=1

tn

|A|∏

j=1

sj. (9)

The number of possible designs explodes to

|Y| = |C|
(∏|E|

n=1 tn
∏|A|

j=1 sj

)

. (10)

If the number of partitions for sensor readings are all the same
(sj = s ∀j) and the number of partitions for all environments
is the same (tn = t ∀n), then (9) becomes

|X| = t|E|s|A| (11)
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Fig. 1. Plot of log |Y| in (13) for t = s = 2. The log is base 10 so a value
of 150 is interpreted here as |Y| = 10150.

TABLE IV
SETS USED IN THE DESIGN PERFORMANCE MATRIX. PRIOR TO EACH

ENTRY, READ “THE SET OF · · · ”

and (10) simplifies to

|Y| = |C|
(
t|E|s|A|)

(12)

or, equivalently

log |Y| = t|E|s|A| log C. (13)

A plot is shown in Fig. 1 for t = s = 2. For |E| = 3 and
|A| = C = 2, the number of design possibilities is |Y| =
4294967296.

For convenience, a list of all the sets used thus far is in
Table IV.

V. WAYS TO FAIL

For a simple binary classification of success and failure in
the design performance matrix (|C| = 2), Aristotle famously
said:

“It is possible to fail in many ways · · · while to
succeed is possible only in one way.”

This is evident in Table I where y15 is the only across-the-
board success. All other design possibilities fail in one or more
instances. Optimality, however, is typically not sought in a
design. Rather, a list of specifications are made a priori to
the design. Any design meeting these criteria is acceptable.
From the perspective of the design performance matrix, many
matrix columns can be claimed to be a successful design.

Failure of a design may require expanding to allow for dif-
ferent failure modes. The failure of a design can be relatively
inconsequential or can be a significant undesirable consequent.
The repeated failure of Alexa to respond to an oral command
to play the 1958 pop classic Get a Job by The Silhouettes
is annoying but inconsequential. The examples listed in the
Introduction illustrate more substantial failures. In the design
performance matrix a significantly undesirable consequent can
be cataloged by replacing a 0 with, say, an 0∗. By bifurcat-
ing the former 0s into 0s and 0∗, we are in essence going
into a ternary rather than binary characterization. But the
contingency count does not change.

The examples listed in Introduction are all of undesirable
consequences of system design and would be labeled 0∗ in
the design performance matrix. A good design will have no
0∗s in the matrix. But the existence of 0∗s is unknown unless
there is a revealing test. As the sensor count and environ-
ments increase, the number of undesirable consequences, i.e.,
the number of 0∗s in the design performance matrix, can be
expected to commensurately increase.

A. Knowability

The challenge of undesired consequences is their escape of
notice by the system designer. The problem is well stated by
Donald Rumsfeld who served as the United State’s Secretary
of Defense under Presidents Ford and George W. Bush [40]:

“As we know, there are known knowns; there are
things we know we know. We also know there are
known unknowns; that is to say we know there are
some things we do not know. But there are also
unknown unknowns – the ones we do not know we
do not know.”

Here, is a listing of the Rumsfeld categories as they relate to
the design performance matrix.

1) The known knowns are the entries in design performance
matrix about the known operation of the current design.

2) The known unknowns are elements in the design
performance matrix that have yet to be determined by,
for example, testing. There is no number entered into
the design cell because the performance at this operating
point is unknown.

3) The most troublesome design performances are the
unknown unknowns. These are environments not
included in the matrix that informed design expertise did
not expect. In such cases, the design performance matrix
is not large enough. More rows and columns need to be
added. If the failure is result of an unanticipated situa-
tion, a new environmental variable is added to the set
of contingencies and (11) will multiplicatively increase.
That is, if an environmental variable is added, then

|X|new = t|E|+1s|A|

= t |X|old. (14)

Correspondingly, the number of possible designs
increase by an exponential factor. From (12)

|Y|new = |C|
(
t|E|+1s|A|)

= |Y|told. (15)
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4) We define unknown knowns, not on Rumsfeld’s list, as
overlooked knowns. These are performance attributes
that, once observed, are obvious and might prompt the
designer to facepalm in embarrassment. Like unknown
unknowns, these cases have been omitted from the
environments in the design performance matrix. The
omission is due to oversight rather that ignorance.
The increases in (14) and (15) apply. Like unknown
unknowns, these cases have been omitted from the
environments in the design performance matrix. The
omission is due to oversight rather that ignorance.

The four Rumsfeld categories relate to the AI failures listed
in the Introduction which we now revisit applying the design
performance matrix model.

1) In the Introduction deals with IBM Watson repeating
a mistake previously ruled incorrect by the Jeopardy
quizmaster. This is an example of an obvious missed
environmental (situational) parameter of the designers.
On the Rumsfeld list, it was an overlooked known. The
occurrence must have embarrassed the designers of IBM
Watson.

2) From the perspective of the overall chess game, the soft-
ware mistake made by Deep Blue serendipitously helped
the computer win. The win, though, was largely due to
the psychological impact on Kasparov and not to any
computer software. From the perspective of Deep Blue’s
performance, the move was a mistake due to a known
unknown. All of the environmental (situational) cases
had not been considered resulting in Deep Blue rolling
the dice and choosing a move at random.

3) Convolutional neural networks can famously perform
image classification by feeding pixel values directly into
the classifier. The number of pixel inputs, each corre-
sponding to a sensor, is enormous. For the conventional
layered perceptron, the curse of dimensionality normally
precludes using image pixels directly. Even though the
number of required trainable weights in a convolutional
neural network is reduced, the number of input pixels
(sensors) is not. Testing all possible images correspond-
ing, say, to a partition of 256 gray levels times three
RGB levels for each pixel, is obviously prohibitive.
Those that are not tested are known unknowns corre-
sponding to nonentries in the design performance matrix.
For the example of the dog mistaken as a wolf by a
deep convolutional neural network because of snow in
the background [3) in the Introduction], the mistake was
discovered by testing.

4) Self driving cars mistaking plastic bags as rocks and
deer is best categorized as an overlooked known. Deep
design expertise in driving should have anticipated driv-
ing hazards like highway tread detached from tires of 18
wheelers (called road gators by truckers), wind blown
plastic bags, and debris blown from the top of dump
trucks in front of cars. For plastic bags, the experts writ-
ing the software did not anticipate such an occurrence.
They should have.

5) According to the National Transportation Safety Board
(NTSB), the failure of the lethal Uber self-driving car

discussed in 5) in the Introduction was due to “‘a fusion’
of three sensor systems: a) radar; b) lidar; and c) a
camera designed to detect an object and determine its
trajectory.” “The system design did not include a con-
sideration for jaywalking pedestrians,” the NTSB report
said [18]. The self-driving car’s deadly mistake is best
categorized as an overlooked known. A driving expert
would know that cars interact with pedestrians.

6) The Soviet Oko system that falsely announced American
missiles had been launched could have resulted in the
loss of millions of lives. This unanticipated unknown
in the system design later became evident after further
investigation.

VI. DESIGN PERFORMANCE MITIGATION

The explosion of design possibilities in (10) and (13)
assume total lack of knowledge concerning a design under
inspection except for sensor count and environmental fac-
tors. If true in reality, the design of anything complex looks
to be nearly impossible. But in practice the threat of possi-
ble contingencies is lesser by a number of factors. Foremost
are inherent design limitations, domain expertise and testing.
Approaching design from a disjunctive perspective can help
the design process.

Even if the number of designs is reduced, the number of
contingencies to label, |X| given in (9) and (11), remains the
same. The explosion remains exponential. If all four param-
eters in (9) are set to 5, there are still nearly 10 million
contingencies to consider.

A. External Design Limitations

The probability of some unconsidered contingencies might
be so small as to escape consideration. Some designs in the
design performance matrix might not be possible for various
reasons. In the design of a road vehicle, for example, the
attributes of “safe” and “inexpensive” might not be possible
to achieve simultaneously. Safe vehicles like Humvees are not
cheap and cheap vehicles like scooters are not safe. It follows
that a perfect design corresponding to all 1s in a column of
the design performance matrix might not be achievable. Such
Pareto tradeoffs [3], [7] are characteristic of multiobjective
design. Knowledge of the impossibility of some designs due
to factors, such as physics, financial, and social constraints,
reduces the number of contingencies requiring testing. The
compounded exponential growth in Fig. 1 may diminish, but
the number of test scenarios, |X|, still remains exponential.

B. Testing

Design is inherently an iterative process [32], [49]. A pro-
totype is built and tested. Deficiencies and mistakes occur
from which the designer learns and improves the design. IBM
Watson’s mistake of repeating a wrong answer, for example,
appears easily corrected.

Testing reveals unknown unknowns and overlooked contin-
gencies. Once discovered, the design performance matrix may
require augmenting to include one or more new environmental
parameters.
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C. Domain Expertise

Domain expertise is of singular importance in successful
design of a complex system. Testing all potential contingencies
in some sequential order is clearly not possible because of the
large count in even moderately complex designs. A designer
experienced in the field can better place the initial prototype
in the ballpark closer to a successful design.

In the washer example, an expert might know the worst
case detergent to use in the washing tests. Testing of other
detergents would then be unnecessary.

Likewise, consider the |X| = 76810000 = 1028854 images of
size 100×100 in (8). This image set includes a lot of nonsense
images like the instantiations of all possible combinations of
random noise. These images are unlikely to be encountered.
In this sense, the figure is overstated. A more reasonable set
of images might be those compressible into, say, a lossless
png file with size below some threshold.

Domain experience is also necessary in formatting informed
testing scenarios. Formula 409, the spray cleaner sold by the
Clorox company, was perfected after 409 attempts to achieve
a design criterion. Hence, the name. A similar example is the
petroleum-based lubricant and protectant, WD-40, invented in
1953 by Norman B. Larsen. We know the design was iterative
because WD-40 stands for “water displacement, formulation
successful in 40th attempt.” A high school student just com-
pleting an introductory course in chemistry would require far
more that the 40 iterations required by industrial chemist
Norman B. Larsen. We would instead be using something
named WD-1024 [33].

D. Disjunctive Design

The design performance matrix allows conjunctive high
connectivity among components. The lethal Uber self-driving
car killed because of a clash between three sensors: 1) “radar;
2) lidar; and 3) a camera.” The clash contributed to the faulty
AI decision process. Disjunctive system design [17], [50] has
loose or no connection among components.

Loosely connected systems of smaller complexity are more
robust and less subject to unintended contingencies than larger
highly interconnected systems.

1) Disjoint System Examples: Examples of a disjunc-
tive approach include disjoint functionality and redundancy.
Disjoint functionality separates different system operations
into silos. Designing and testing each silo independently is
less complex than an overall test. Once established, however,
the question of performance of the combination of the silos
remains to be examined.

a) Disjoint functionality: Examples of disjoint function-
ality disjunctive design include the Aegis Combat System and
Combs fuzzy control.

1) Aegis: The Aegis Combat System is a powerful and
versatile weapon of the U.S. Navy. Scharre [45]
gives a useful assessment of the system. “Aegis is
a weapon system of staggering complexity.” Aegis’s
composition as a number of individual subsystems of
radar, missile and other capabilities allows for robust

operation. Aegis doctrines select from the smörgås-
bord of resources to accomplish a mission. Captain
Pete Galluch, Commander of the Aegis Training and
Readiness Center, says “You can mix and match [Aegis
resouces]. It is a very flexible system,” some doctrines
are predetermined or can be composed by an operator.
“We can do all doctrine statements, some with a push
of a button, or bring them up individually.” The Aegis
Combat System is a loosely connected aggregation of
simpler systems. The composite “system is of staggering
complexity” yet boasts a history of reliable performance.

2) Combs Control: In fuzzy control, Combs and
Andrews [8] proposed use of a disjunctive configuration
to mitigate the rule explosion characteristic of Mamdani
control [31], [44], [50]. Combs control makes use of
the fact that many sensor or sensor combinations can
achieve the same goal. A car can turn right by “turn-
ing the steering wheel right AND lightly breaking on
the car’s right tires AND slightly accelerating the car’s
left tires.” Combining these resources into various con-
trol rules is characteristic of the conjunctive Mamdani
approach. Combs would alter this to “turning the steer-
ing wheel right OR lightly breaking on the car’s right
tires OR slightly accelerating the car’s left tires.” The
Combs approach allows the flexibility of use of one or
more of the resources to solve the problem. Mamdani
requires all resources be used in each rule. The use of
AND and OR here clearly differentiates between a con-
junctive versus a disjunctive design approach. For more
detailed explanation of Combs control and its properties,
see Ewert et al. [17].

3) Redundancy: Redundancy is often used to boost a
system’s reliability [28]. Since we assume all system
components will operate without hardware failure, reli-
ability in the conventional sense is not considered
in our model as a contingency. Final performance
is, rather, the focus. Swarm intelligence [5] is an
example of redundant disjunctive design. Using simple
rules, swarms can demonstrate gestalt emergent behav-
ior [21]. Swarms can adapt [41], [42], e.g., worker
ants taking on army ant properties when their swarm
is attacked [5]. Swarms need not be mobile. Individual
cells in sections of the human lung operate disjunc-
tively to allow the emergent behavior of breathing.
Swarm intelligence has found numerous applications [5],
including search [26], optimization [15], and telecom-
munications [24], [25]. Offensive autonomous drone
swarms are perhaps the most chilling application of
swarm intelligence [35], [45]. Even when highly dec-
imated, redundancy makes swarms robust in completing
their mission [43].

2) Reduction in Contingencies for Disjunctive Design:
Here is the analysis of the contingency count for a purely
disjunctive system.

Let a system be composed of |A| sensors and assume the
influence of the action prescribed by one sensor is independent
from the actions of the others. An example of this disjunctive
relationship among |A| = 3 sensors is illustrated in the design
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TABLE V
DISJUNCTIVE PERFORMANCE DESIGN MATRIX FOR |A| = THREE BINARY

SENSORS

performance matrix shown in Table V. Assume each sensor
has s = 2 partitions. Because the system is purely disjunctive,
each sensor can be assessed separately. The number of con-
tingencies is now reduced to |X| = 6. In general, the number
of contingencies for a purely disjunctive system is

|X| =
|A|∑

j=1

sj. (16)

When the partition count is the same for all sensors (sj = s ∀j),
then (16) becomes

|X| = s |A|. (17)

Compare with (4). Instead of the exponential growth of con-
tingencies with respect to the number of sensors, the growth
is linear.

There are |C| = 2 rankings for each sensor in the example
in Table V. A one in the design performance matrix means that
the action from a sensor is successfully contributing to a spe-
cific planned mission. A zero means it is not. The conjunctive
design analysis in (2) shows the number of possible designs
increasing as a compound exponential. Using (17), the number
of possible designs is seen to increase only exponentially for
the disjunctive case. Specifically

|Y| = |C||X| = |C|
∑|A|

j=1 sj =
|A|∏

j=1

|C||A|sj (18)

and, if sj = s ∀j, then

|Y| = |C||X| = |C|s|A|. (19)

The treatment of environments/situations does not follow in
disjunctive design. It makes no sense to a priori assess envi-
ronments/situations using disjunctive analysis in the design.
We are constrained to conjunctive combinations. With refer-
ence to (9), the total number of contingencies for a disjunctive
design is

|X| = (s |A|)
|E|∏

n=1

tn

or, if tn = t ∀n

|X| = (s |A|)t|E|.

So with disjunctive design, consideration of environments and
situations remains basically conjunctive.

Alternately, there are cases where environments in which a
system finds itself can be tested before use. The Aegis system
can vet its current environment by safe testing. “Once an

Aegis able ship arrives in a theater, the first thing the crew
does is test the weapons doctrine to see if there is anything
in the environment that might cause it to fire in peacetime
· · · This is done safely by enabling a hardware-level cutout
called the Fire Inhibit System · · · ” Commander Galluch sum-
marizes: “there is no voltage that can be applied to light the
wick and let the rocket fly out” [45]. Such testing helps avoid
unknown unknowns. Testing system operation prior to system
deployment, when possible, eliminates the exponential explo-
sion of contingencies required for preplanned environments
and situations in the design.

VII. CONCLUSION

Increasing complexity increases operational contingencies.
We can reasonably expect the increase in the number of con-
tingencies will contain unexpected contingencies. Depending
on how the system is used, these unexpected contingencies
can range from the annoying to the highly serious. The worse
case of contingency growth is a highly connected, or con-
junctive, system where the contingencies grow exponentially
with respect to an increase in complexity. On the other end is
the loosely connected disjunctive system where an increase in
the number of sensors yields a linear increase in contingency
count. Most system designs may lie between the two extremes
of totally conjunctive and disjunctive. The avoidance of unex-
pected contingencies can be mitigated by domain expertise.
Insightful testing can be used by the designer to refine the
design. Design is inherently iterative.

Although the analysis is applicable to all system design, it is
especially troubling for the design of AGI. By necessity, gen-
eral AI requires high complexity which will eventually birth
contingency counts difficult to address.

REFERENCES

[1] P. Arabshahi et al., “Adaptive routing in wireless communication
networks using swarm intelligence,” in Proc. 19th AIAA Int. Commun.
Satellite Syst. Conf., Toulouse, France, Apr. 2001, pp. 1–9.

[2] M. Baroni et al., “CommAI: Evaluating the first steps towards a useful
general AI,” 2017. [Online]. Available: arXiv:1701.08954.

[3] C. Baylis, R. J. Marks, and L. Cohen, Pareto Optimization of Radar
Receiver Low-Noise Amplifier Source Impedance for Low Noise and
High Gain. Cambridge, U.K.: Cambridge Univ. Press, Nov. 2015.

[4] J. C. Bezdek, “Fuzzy models—What are they, and why?” IEEE Trans.
Fuzzy Syst., vol. 1, no. 1, pp. 1–6, Feb. 1993.

[5] E. Bonabeau, M. Dorigo, G. Theraulaz, and G. Theraulaz, Swarm
Intelligence: From Natural to Artificial Systems. New York, NY, USA:
Oxford Univ. Press, 1999.

[6] J. M. Carlson and J. Doyle, “Highly optimized tolerance: Robustness
and design in complex systems,” Phys. Rev. Lett., vol. 84, no. 11,
pp. 2529–2532, Mar. 2000.

[7] Y. Censor, “Pareto optimality in multiobjective problems,” Appl. Math.
Optim., vol. 4, no. 1, pp. 41–59, 1977.

[8] W. E. Combs and J. E. Andrews, “Combinatorial rule explosion elim-
inated by a fuzzy rule configuration,” IEEE Trans. Fuzzy Syst., vol. 6,
no. 1, pp. 1–11, Feb. 1988.

[9] M. Danishvar, A. Mousavi, and P. Broomhead, “EventiC: A real-
time unbiased event-based learning technique for complex systems,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 50, no. 5, pp. 1649–1662,
May 2020.

[10] W. A. Dembski, No Free Lunch: Why Specified Complexity Cannot
Be Purchased Without Intelligence. New York, NY, USA: Rowman
Littlefield, 2006.

[11] W. A. Dembski and R. J. Marks, II, “Conservation of information in
search: Measuring the cost of success,” IEEE Trans. Syst., Man, Cybern.
A, Syst. Humans, vol. 39, no. 5, pp. 1051–1061, Sep. 2009.

[12] W. A. Dembski and R. J. Marks, “Bernoulli’s principle of insufficient
reason and conservation of information in computer search,” in Proc.
IEEE Int. Conf. Syst. Man Cybern., 2009, pp. 2647–2652.

Authorized licensed use limited to: Baylor University Libraries. Downloaded on April 18,2022 at 16:34:25 UTC from IEEE Xplore.  Restrictions apply. 



2808 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 52, NO. 5, MAY 2022

[13] W. A. Dembski and R. J. Marks, II, “The search for a search: Measuring
the information cost of higher level search,” J. Adv. Comput. Intell. Intell.
Informat., vol. 14, no. 5, pp. 475–486, 2010.

[14] B. Dixon, Star Self-Driving Truck Firm Shuts Down; AI Not Safe Enough
Soon Enough, Mind Matters News, Seattle, WA, USA, Mar. 2020.

[15] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE
Comput. Intell. Mag., vol. 1, no. 4, pp. 28–39, Nov. 2006.

[16] K. Dorst and N. Cross, “Creativity in the design process: Co-evolution of
problem-solution,” Design Stud., vol. 22, no. 5, pp. 425–437, Sep. 2001.

[17] W. Ewert, R. J. Marks, B. B. Thompson, and A. Yu, “Evolutionary inver-
sion of swarm emergence using disjunctive combs control,” IEEE Trans.
Syst., Man, Cybern., Syst., vol. 43, no. 5, pp. 1063–1076, Sep. 2013.

[18] R. Gonzales, Feds Say Self-Driving Uber SUV Did Not Recognize
Jaywalking Pedestrian in Fatal Crash, Washington, DC, USA, NPR,
Nov. 2019. [Online]. Available: npr.org

[19] K. Finley. (Sep. 2012). Did a Computer Bug Help Deep Blue Beat
Kasparov?. [Online]. Available: Wired.com

[20] H. Gao, C. Ye, W. Lin, and J. Qiu, “Complex workpiece positioning
system with nonrigid registration method for 6-DoFs automatic spray
painting robot,” IEEE Trans. Syst., Man, Cybern., Syst., early access,
Mar. 31, 2020, doi: 10.1109/TSMC.2020.2980424.

[21] I. A. Gravagne and R. J. Marks, II, “Emergent Behaviors of Protector,
Refugee, and Aggressor Swarm,” IEEE Trans. Syst., Man, Cybern., B,
Cybern., vol. 37, no. 2, pp. 471–476, Apr. 2007.

[22] P. Haas. (Dec. 2017). The Real Reason to Be Afraid of Artificial
Intelligence, TEDxDirigo. Accessed: Apr. 4, 2020. [Online]. Available:
youtu.be/TRzBk_KuIaM

[23] Y.-C. Ho, Q.-C. Zhao, and D. L. Pepyne, “The no free lunch theorems:
Complexity and security,” IEEE Trans. Autom. Control, vol. 48, no. 5,
pp. 783–793, May 2003.

[24] I. Kassabalidis, M. A. El-Sharkawi, R. J. Marks, II, P. Arabshahi,
and A. A. Gray, “Swarm intelligence for routing in communication
networks,” in Proc. IEEE Global Telecommun. Conf. (Globecom), San
Antonio, TX, USA, 2001, pp. 3613–3617.

[25] I. Kassabalidis, M. A. El-Sharkawi, R. J. Marks, II, P. Arabshahi, and
A. A. Gray “Adaptive-SDR: Adaptive swarm-based distributed routing,”
in Proc. Int. Joint Conf. Neural Netw. World Congr. Comput. Intell.,
Honolulu, HI, USA, May 2002, pp. 2878–2883.

[26] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. Int.
Conf. Neural Netw. (ICNN), vol. 4, 1995, pp. 1942–1948.

[27] L. Kong, M. K. Khan, F. Wu, G. Chen, and P. Zeng, “Millimeter-wave
wireless communications for IoT-cloud supported autonomous vehicles:
Overview, design, and challenges,” IEEE Commun. Mag., vol. 55, no. 1,
pp. 62–68, Jan. 2017.

[28] L. M. Leemis, Reliability: Probabilistic Models and Statistical Methods.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1995.

[29] A. Lieto, M. Bhatt, A. Oltramari, and D. Vernon, “The role of cognitive
architectures in general artificial intelligence,” Cogn. Syst. Res., vol. 48,
pp. 1–3, May 2018.

[30] S. Lloyd, “Measures of complexity: A nonexhaustive list,” IEEE Control
Syst. Mag., vol. 21, no. 4, pp. 7–8, Aug. 2001.

[31] E. H. Mamdani, “Advances in the linguistic synthesis of fuzzy con-
trollers,” Int. J. Man-Mach. Stud., vol. 8, no. 6, pp. 669–678, 1976.

[32] R. J. Marks-II, Ed. and L. A. Zadeh, Fuzzy Logic Technology and
Applications. New York, NY USA: IEEE Technol. Activities Board,
1994.

[33] R. J. Marks, W. A. Dembski, and W. Ewert, Introduction to Evolutionary
Informatics. Singapore: World Sci., 2017.

[34] R. J. Marks, II, Handbook of Fourier Analysis & Its Applications.
New York, NY, USA: Oxford Univ. Press, 2009.

[35] R. J. Marks, The Case for Killer Robots: Why Americas Military Needs
to Continue Development of Lethal AI. Seattle, WA, USA: Discov. Inst.
Press, 2020.

[36] A. Marshall, The Uber Crash Won’t Be the Last Shocking Self-Driving
Death, WIRED, Boone, IA, USA, Mar. 2018. [Online]. Available:
https://www.wired.com/story/uber-self-driving-crash-explanation-lidar-
sensors/

[37] N. McBride, “The ethics of driverless cars,” ACM SIGCAS Comput.
Soc., vol. 45, no. 3, pp. 179–184, 2016.

[38] T. M. Mitchell, “The need for biases in learning generalizations,” Dept.
Comput. Sci., Rutgers Univ., New Brunswick, NJ, USA, Rep. CBM-
TR-117, p. 59, 1980.

[39] V. C. Müller, “Risks of general artificial intelligence,” J. Exp. Theor.
Artif. Intell., vol. 26, no. 3, pp. 297–301, 2014.

[40] R. Pawson, G. Wong, and L. Owen, “Known knowns, known unknowns,
unknown unknowns: The predicament of evidence-based policy,” Amer.
J. Eval., vol. 32, no. 4, pp. 518–546, 2011.

[41] J. H. Roach, W. Ewert, R. J. Marks, II, and B. B. Thompson “Unexpected
emergent behaviors from elementary swarms,” in Proc. IEEE 45th
Southeastern Symp. Syst. Theory (SSST), Waco, TX, USA, Mar. 2013,
pp. 41–50.

[42] J. H. Roach, R. J. Marks, II, and B. B. Thompson “Tactical task allo-
cation and resource management in non-stationary swarm dynamics,”
in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Dallas, TX, USA,
Aug. 2013, pp. 1–5.

[43] J. H. Roach, R. J. Marks, II, and B. B. Thompson, “Recovery from
sensor failure in an evolving multiobjective swarm,” IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 45, no. 1, pp. 170–174, Jan. 2015.

[44] M. G. Sanchez-Torrubia, C. Torres-Blanc, and S. Krishnankutty,
“Mamdani’s fuzzy inference eMathTeacher: A tutorial for active learn-
ing,” WSEAS Trans. Comput., vol. 7, no. 5, pp. 363–374, 2008.

[45] P. Scharre, Army of None: Autonomous Weapons and the Future of War.
New York, NY, USA: WW Norton Company, 2018.

[46] C. Schaffer, “A conservation law for generalization performance,” in
Proc. 11th Int. Conf. Mach. Learn., 1994, pp. 259–265.

[47] The Six Million Dollar Man, Season One, Episode 4, Day of
the Robot, IMDb, Seattle, WA, USA, 1974. [Online]. Available:
https://www.imdb.com/title/tt0071054/

[48] G. Smith, The AI Delusion. Oxford, U.K.: Oxford Univ. Press, 2018.
[49] H. Takeda, P. Veerkamp, and H. Yoshikawa, “Modeling design process,”

AI Mag., vol. 11, no. 4, p. 37, 1990.
[50] J. J. Weinschenk, W. E. Combs, and R. J. Marks, II, “Avoidance of rule

explosion by mapping fuzzy systems to a disjunctive rule configuration,”
in Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE), St. Louis, MO, USA,
May 2003, pp. 43–48.

[51] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82,
Apr. 1997.

[52] Z. Xu, “Group decision making with triangular fuzzy linguistic vari-
ables,” in Proc. Int. Conf. Intell. Data Eng. Autom. Learn., 2007,
pp. 17–26..

Samuel Haug received the B.A. degree with Baylor
University, Waco, TX, USA.

He is currently taking a gap year before attending
medical school, during which he is participating in
research with the Department of Engineering and
Computer Science, Baylor University.

Robert J. Marks, II (Life Fellow, IEEE) is
a Distinguished Professor of Engineering with
the Department of Engineering and Computer
Science, Baylor University, Waco, TX, USA,
and the Director and a Senior Fellow of the
Walter Bradley Center for Natural and Artificial
Intelligence, Baylor University, where he is the
Faculty Advisor for the Ratio Christi and American
Scientific Affiliation student chapters. He has the
authored/coauthored Neural Smithing: Supervised
Learning in Feedforward Artificial Neural Networks

(MIT Press), Handbook of Fourier Analysis and Its Applications (Oxford
University Press), Introduction to Shannon Sampling and Interpolation Theory
(Springer-Verlag), and Introduction to Evolutionary Informatics (World
Scientific).

William A. Dembski (Senior Member, IEEE)
received the Master of Divinity in theology from the
Princeton Theological Seminary, the Ph.D. in math-
ematics from the University of Chicago, and another
Ph.D. in philosophy from the University of Illinois
at Chicago.

He is a Writer, a Researcher, and a Entrepreneur.
A Cross-Disciplinary Scholar with doctorates in
mathematics and philosophy, he has contributed to
the peer-reviewed literature in mathematics, engi-
neering, philosophy, and theology. He has authored

and edited over twenty books, many of them on aspects of the theory of
evolutionary informatics, notably The Design Inference: Eliminating Chance
Through Small Probabilities (Cambridge University Press, 1998). His main
work these days focuses on developing educational technologies, especially
data analytics tools for assessing influence in education. He has recently coau-
thored with Robert J. Marks a biography of Walter Bradley titled For a Greater
Purpose. A baseball fan, he also coauthored (with Alex Thomas and Brian
Vikander) the story of Steve “White Lightning” Dalkowski, reputed to be
the fastest pitcher ever. This biography is titled Dalko: The Untold Story of
Baseball Fastest Pitcher (Influence Publishers, 2020).

Authorized licensed use limited to: Baylor University Libraries. Downloaded on April 18,2022 at 16:34:25 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TSMC.2020.2980424


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


