
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 8, AUGUST 2020 1607

Characterization of In-Cone Logic Locking
Resiliency Against the SAT Attack

Kyle Juretus , Student Member, IEEE, and Ioannis Savidis , Senior Member, IEEE

Abstract—The resiliency of in-cone logic locking techniques to
the satisfiability (SAT) attack is characterized in this paper. An
analysis of the parameters of the SAT solver that impact security
and a characterization of the effect netlist topology has on the
security of the circuit is presented. The analysis of SAT solver
parameters and logic structure is used to develop three novel
logic locking gate selection algorithms based on maximum fanout
free cones (MFFCs) and gate controllability for circuits imple-
menting XOR, look-up table (LUT), and 2 × 1 MUX-based logic
obfuscation. The XOR, LUT, and MUX MFFC-based algorithms
resulted in an average increase of, respectively, 61.8%, 123.6%,
and 38.5% in the minimum number of iterations required to
complete the SAT attack across 1,000 different variable order-
ings of the netlist while applying the locking techniques to 5% of
the gates within the netlist. In addition, the SAT attack resiliency
and output corruption of the developed algorithms are compared
with out-of-cone locking techniques.

Index Terms—Hardware security, key gate selection, logic
locking, satisfiability (SAT) attack.

I. INTRODUCTION

THE root of trust in the computing stack is the hardware
layer, with the software layer requiring a consistent pro-

tocol for interaction. The hardware layer is often inherently
assumed to be trusted, which is no longer valid as integrated
circuit (IC) fabrication transitions toward a horizontal model.
The transition from a vertical manufacturing model, where
every step of the IC design and manufacturing process is
executed in-house, to a horizontal model is driven by the
multibillion dollar investment required to develop an advanced
fabrication process [1] and the increased utilization of third-
party intellectual property (IP) as a means to reduce design
time, add functionality, and reduce costs [2].

Third-party IP, fabrication and test facilities, and the end-
user of an IC are all security risks as each represents an
untrusted entity in the IC design and fabrication flow. The
security threats posed by untrusted third-parties include IP
theft, counterfeiting, and overproduction of ICs, and the

Manuscript received January 15, 2019; revised April 12, 2019; accepted
June 12, 2019. Date of publication June 27, 2019; date of current ver-
sion July 17, 2020. This work was supported in part by the Air Force
Office of Scientific Research, National Defense Science and Engineering
Graduate Fellowship under Grant 32 CFR 168a, in part by the Drexel Ventures
Innovation Fund, and in part by the National Science Foundation under Grant
CNS-1648878 and Grant CNS-1751032. This paper was recommended by
Associate Editor S. Ghosh. (Corresponding author: Kyle Juretus.)

The authors are with the Department of Electrical and Computer
Engineering, Drexel University, Philadelphia, PA 19104 USA (e-mail:
kjj39@drexel.edu; isavidis@coe.drexel.edu).

Digital Object Identifier 10.1109/TCAD.2019.2925387

insertion of harmful circuit modifications (hardware Trojans).
Reported cases of counterfeit ICs [3], [4] and ICs with back-
doors [5] reveal an increasing urgency and concern of threats
attributed to the hardware layer.

One primary research direction to mitigate the threats of
untrusted third-parties is obfuscation, which aims to limit the
amount of circuit information an adversary is able to recover
from an IC. Split manufacturing [6], IC camouflaging [7]–[9],
and logic encryption/locking [10]–[14] are three prominent
obfuscation methodologies. The use of an active key when
applying logic locking protects against untrusted foundries and
end-users, as opposed to split manufacturing and camouflaging
which allow for black-box use of the IC.

While logic locking provides protection against a wide
variety of threats, the satisfiability (SAT) attack [15] has
severely limited the effectiveness of logic locking techniques.
The SAT attack efficiently determines the key used for logic
locking by applying a miter circuit to discern input–output
pairs that are then added as additional constraints to the
solver. A detailed description of the SAT attack is provided in
Section II.

To protect against the SAT attack, a variety of techniques
were developed that insert additional logic to artificially con-
trol the corruption of the outputs, as described in [16]–[19].
While the proposed out-of-cone techniques allow for a prov-
able methodology to increase the number of required iterations
of the SAT attack to decrypt a circuit, a variety of new
attack vectors have emerged that subvert the provable security
provided against SAT-based attacks [20]–[24].

Instead of adding circuitry to control the level of corrup-
tion at the outputs, this paper addresses logic locking as
applied within the original logic cone of the IC, which is
referred to as in-cone logic locking for the remainder of
this paper. In-cone modifications provide increased resiliency
against removal attacks as an incomplete netlist remains once
the in-cone logic is removed. However, logical masking allows
for efficient execution of the SAT attack.

The contributions of this paper include a characterization
of in-cone logic locking techniques while analyzing parame-
ters that are uniquely sensitive to execution on a given SAT
solver. In addition, an analysis of the impact logic structure
has on the efficacy of the SAT attack is performed. Guiding
principles to limit the generation of superfluous keys are
developed. The analysis of in-cone logic locking is utilized to
develop a gate selection strategy based on maximum fanout
free cones (MFFCs) and gate controllability for the insertion
of XOR gates, heterogeneously sized look-up tables (LUTs),
and/or 2 × 1 MUXes. The developed in-cone MFFC-based

0278-0070 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Drexel University. Downloaded on July 31,2020 at 13:26:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6588-4167
https://orcid.org/0000-0003-4230-1795

1608 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 8, AUGUST 2020

Algorithm 1: SAT Attack Algorithm [15]
Input: C and eval
Output:

−→
K C

i := 1;

F1 = C(
−→
X ,

−→
K1,

−→
Y1) ∧ C(

−→
X ,

−→
K2,

−→
Y2);

while sat[Fi ∧ (
−→
Y1 �= −→

Y2)] do−→
Xd

i := sat_assignment−→
X

[Fi ∧ (
−→
Y1 �= −→

Y2)];−→
Yd

i := eval(
−→
Xd

i);

Fi+1 := Fi ∧ C(
−→
Xd

i ,
−→
K1,

−→
Yd

i) ∧ C(
−→
Xd

i ,
−→
K2,

−→
Yd

i);
i := i + 1;

end−→
KC := sat_assignment−→

K1
(Fi)

selection algorithms are compared to the out-of-cone stripped
functionality logic locking (SFLL) technique [18] with regard
to SAT security and corruption of circuit outputs.

The rest of the paper is organized as follows. An introduc-
tion to the SAT attack is provided in Section II. An overview of
the methodologies developed to thwart the SAT attack is pro-
vided in Section III. An analysis of parameters that result in a
variation in the number of iterations to execute the SAT attack
is described in Section IV. A characterization of the effect the
logical structure of the netlist has on the provided security
against the SAT attack is described in Section V. Design cri-
teria and constraints to limit the number of generated working
keys for a locked circuit are described in Section VI. A logic
locking gate selection algorithm based on the results provided
in Sections IV–VI is described in Section VII. Results compar-
ing the proposed algorithm with prior in-cone logic selection
algorithms and the SFLL out-of cone logic locking technique
are described in Section VIII. A discussion of trends in logic
locking methodologies is provided in Section IX. Concluding
remarks are provided in Section X.

II. SAT ATTACK OVERVIEW

The SAT attack requires as input a reverse engineered netlist
of the locked circuit in conjunction with an activated IC. The
attack, when applied to logic locked ISCAS’85 benchmark
circuits, is able to decrypt a majority of the benchmarks within
10 hours [15]. Pseudocode of the algorithm implementing the
SAT attack described in [15] is provided as Algorithm 1. The
notation utilized to describe the combinational logic space is
C(

−→
X ,

−→
K ,

−→
Y) ⊆ B

M+L+N , where B is the binary domain of
{0, 1},

−→
X ∈ B

M represents the M primary inputs,
−→
Y ∈ B

N

represents the N primary outputs, and
−→
K ∈ B

L represents the
L key inputs.

The reverse engineered locked netlist is modified to form a
miter circuit, as shown by the example circuit in Fig. 1. The
duplicate versions of the circuit are referred to as A and B.
Outputs of the duplicated circuits A and B are XORed together,
resulting in a logic 1 when a difference between the two is
observed. All of the XOR outputs are then connected to an
OR gate that evaluates to logic 1 when any of the outputs of
circuits A and B differ.

(
Ā ∨ B̄ ∨ C

) ∧ (
A ∨ C̄

) ∧ (
B ∨ C̄

)
(1)

Fig. 1. Miter circuit with replicated A and B versions of the reverse engi-
neered netlist that includes obfuscated gates. Corresponding outputs between
the A and B versions of the circuit are XORed. Each XORed signal is then
passed to an OR gate to check for any differentiating output.

The Tseytin transformation [25] is applied to convert the
logical representation of the circuit into conjunctive normal
form (CNF). A Tseytin transformation of a 2-input AND gate
is provided as (1), where A and B represent inputs and C rep-
resents the output of the gate. Once converted to CNF form,
typical SAT solvers are able to solve for the logical conditions
of the circuit that generate a logic 1 at the output of the miter
circuit. As the only varying signals between the A and B copies
of the circuit are the key nets, whenever a condition that gen-
erates a logic 1 at the output of the miter circuit is observed, at
least one key value is pruned from the key-space. The inputs
to the miter circuit that result in such a condition are called
distinguishing input patterns (DIPs) and are represented by

−→
Xd

i
in Algorithm 1.

Once a DIP is generated, the DIP is applied to an activated

IC to determine the correct output
−→
Yd

i . The resulting
−→
Xd

i and−→
Yd

i are included as additional constraints to the SAT solver
by applying constant Boolean propagation, which generates a
new set of CNF clauses that are then added as constraints. The
process is repeated until no further DIPs are found, resulting
in a working key for the locked circuit.

III. SAT ATTACK RESISTANT ARCHITECTURES

The greatest cost, with regard to the computing efficiency
of an adversary, occurs when only a single key is eliminated
with each DIP while executing the SAT attack. To produce
such a computational cost, techniques described in [16]–[19]
add additional circuitry to ensure the output is strategically
corrupted such that a DIP only eliminates a single key vector.

The typical circuit resembles a structure similar to that
shown in Fig. 2, where the flip function limits the amount
of data corruption observed at the OUT net. The flip func-
tion varies for the different implementations of the circuit and
includes: 1) the generation of complementary logic blocks
that may or may not result in 1 when an incorrect key is
applied [16]; 2) a mask function that generates an incor-
rect output for each incorrect key for only a single input
pattern [17]; and 3) the Hamming distance and LUT-based
circuitry that corrects the corrupted functional output of a
logic cone based on the applied input [18]. Techniques that
artificially control the corruption of the circuit [16]–[19]
allow for an algorithmic determination of the number of
iterations required to execute the SAT attack. However,
out-of-cone methodologies exhibit multiple vulnerabilities

Authorized licensed use limited to: Drexel University. Downloaded on July 31,2020 at 13:26:31 UTC from IEEE Xplore. Restrictions apply.

JURETUS AND SAVIDIS: CHARACTERIZATION OF IN-CONE LOGIC LOCKING RESILIENCY AGAINST THE SAT ATTACK 1609

Fig. 2. Generalized circuit topology to defend against the SAT attack utilized
in [16]–[19]. Signals represented by X, which are extracted from the inputs
to the logical cone or the internal signals of the logical cone, are combined
with key signals K to generate a function that controls the assertion of the
flip function.

to non-SAT-based attacks, including removal attacks [22],
approximation attacks [20], [21], and structural attacks [23].

Removal attacks [22] are successful on out-of-cone tech-
niques when the flip function in Fig. 2 is removed and the
original logic cone is unaltered. Many of the SAT resistant
methodologies, therefore, rely on in-cone logic locking as a
means to provide security if the SAT resistant circuitry is
removed. However, the addition of in-cone logic locking to
the SAT resistant circuit topologies is susceptible to approxi-
mation attacks as described in [20] and [21], which are capable
of determining the logic locking key without removal of the
SAT resistant logic. The attacks utilize separate approaches,
but apply a common principal, specifically the use of cer-
tain I/O pairs that prune the key space of the in-cone logic
locking elements. The algorithm in [20] applies an error calcu-
lation after a certain interval of iterations and utilizes random
I/O patterns to eliminate in-cone keys. The strategy of using
random I/Os is beneficial as the implemented in-cone logic
locking techniques generate a large number of corrupted logi-
cal outputs. A separate technique described in [21] forces the
DIPs to eliminate at least two keys, which results in gener-
ated I/O pairs that prune the key space of the in-cone logic
locking elements. The SFLL method proposed in [18] alters
the logical minterms within the logic cone, which requires a
correction of the logical function by the flip signal and, there-
fore, results in a reduced vulnerability to a removal attack. The
attack proposed in [23] utilizes the properties of the modified
logic cone and the Hamming distance-based error correction
circuitry to efficiently determine the key without the need for
an oracle circuit.

While there are a variety of attacks against out-of-cone
techniques, the two primary attacks against in-cone logic lock-
ing techniques are sensitization attacks [26] and SAT-based
attacks [15]. Inserting key gates in a pairwise fashion prevents
sensitization-based attacks from significantly pruning the key
space [26], leaving SAT-based attacks as the dominant attack
vector for in-cone logic locking techniques. The analysis of
SAT attack resiliency is, therefore, the focus of this paper,
with the goal of increasing the resiliency of the circuit to a
SAT attack. The improved resiliency of in-cone logic locking
is also of particular benefit to techniques that rely on modifi-
cations to the original logic cone, such as IC camouflaging. In
addition, the characterization of in-cone logic locking provides

Fig. 3. AND-tree topologies with (a) input at every level and (b) inputs at
the level farthest from the output.

a baseline to quantify the security of out-of-cone techniques
against non-SAT-based attack vectors.

IV. AVOIDING SAT SOLVER SPECIFIC SECURITY

Each developed SAT solver includes differences that effect
the solution time and number of iterations required to solve a
given problem. This section analyzes variable ordering, initial
conditions, and phase heuristics to characterize the variability
in the execution of the SAT attack. The presented analysis is
not a methodology to increase the security of in-cone logic
locking against the SAT attack, but rather to prevent security
solutions that target a specific implementation of a SAT solver.

The homogeneous tree structures shown in Fig. 3 are the
fundamental logical structures used in the characterization of
in-cone logic locking techniques as the AND-tree was shown
to provide increased resiliency against the SAT attack [15].
An analysis of variable ordering, and, therefore, the clause
order provided to the SAT solver is provided in Section IV-A.
The effect of the applied initial DIPs on the number of iter-
ations required to execute the SAT attack is described in
Section IV-B. The three phase heuristics of 1) all true, 2) all
false, and 3) the advanced heuristic included with Lingeling
are analyzed in Section IV-C to characterize the effect that the
initial phase of the solver has on the SAT attack.

A. Effect of Variable Ordering on the SAT Attack

The C++ implementation of the SAT attack described
in [15] topologically sorts the circuit, which results in a vari-
able ordering of nodes at an equal logical level dependent on
the structure of the netlist. Randomly rewriting the original
netlist, therefore, provides a means to generate multiple vari-
able orderings. Note that the topology of the circuit is never
altered, simply the structural order of the netlist is rearranged.
The structure in Fig. 3(a) with 16 inputs is implemented to
analyze netlist reordering, where the tree of AND gates is
linearly connected. All nodes except for the output are logic
locked with an XOR, requiring a key gate at every input and
internal net.

From the initial netlist, 1,000 random variable orderings of
the linear AND-tree structure shown in Fig. 3(a) are generated
and provided as inputs to the SAT solver. The results of exe-
cuting the SAT attack on the reordered netlist are provided in
Fig. 4, with the unaltered netlist order shown as a vertical line.
OR, NOR, NAND, XOR, and XNOR trees are also analyzed,
providing a quantified distribution of the number of iterations

Authorized licensed use limited to: Drexel University. Downloaded on July 31,2020 at 13:26:31 UTC from IEEE Xplore. Restrictions apply.

1610 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 8, AUGUST 2020

Fig. 4. Simulation of the gate tree structure from Fig. 3(a) with 1,000 random
netlist orders quantifying the number of iterations required for the SAT attack
to decrypt the tree. All nets within the tree are encrypted for the simulation.
The vertical line represents the netlist order used in [15].

of the SAT attack required to decrypt the keys as a function
of the variable ordering of the netlist.

For the linear tree structure shown in Fig. 3(a), the results
shown in Fig. 4 indicate NAND and NOR trees require more
iterations on average to complete the SAT attack than the AND
and OR tree structures. The increase in the average number of
iterations is due to 1) the distribution of output values being
biased toward either logic 0 or logic 1 when applying the
secured NAND and NOR tree structures and 2) the SAT attack
applying initial DIPs of all logic 0 and all logic 1. The ini-
tial DIPs of all logic 0 and all logic 1 do not significantly
constrain the key space for the NAND and NOR tree topolo-
gies as much as the key space is constrained for the AND
and OR trees. As the linear NAND/NOR-based tree structure
shown in Fig. 3(a) is vulnerable to a more limited number of
significantly constraining DIPs, the average number of itera-
tions required to execute the SAT attack increases. However,
the minimum number of iterations across all gates remains
relatively constant as the attack selects the more constraining
DIPs in earlier iterations.

The pyramid tree structure in Fig. 3(b) is also analyzed for
the same six standard gate types with 1,000 random netlist
orderings of each, with results provided in Fig. 5. The AND
and OR trees yield much stronger security on average than the
NAND and NOR tree topologies, exactly opposite of what is
indicated by the results provided in Fig. 4 for the tree topology
of Fig. 3(a). The small AND-tree topology shown in Fig. 6
illustrates the cause of the increase in the number of iterations
when executing the SAT attack. An output of 1 from the AND-
tree forces all internal nodes of the tree to logic 1 until an
XOR key gate is reached, at which point the SAT solver has
an increased degree of freedom. The solver is now allowed to
select either a logic 0 or 1 for each input of the XOR gate. The
increase in the degrees of freedom result in a decrease in the
likelihood of the SAT solver generating an input of all ones
as a DIP. Any DIP that is not all ones results in a variety of
key combinations that generate a zero at the output of the IC
as the AND tree is significantly skewed toward a zero output.
Similarly, a DIP of all logic zeros is less likely to be generated
for an OR-tree, which allows for the masking of incorrect
key sequences and accounts for the increase in the number

Fig. 5. Simulation of the gate tree structure from Fig. 3(b) with 1,000 random
netlist orders quantifying the number of iterations required for the SAT attack
to decrypt the tree. All nets within the tree are encrypted for the simulation.
The vertical line represents the netlist order used in [15].

Fig. 6. SAT solver propagating a constant logic 1 at the output of the AND-
tree. After a key gate is reached, the solver has an increased degree of freedom
when selecting input logic values.

of iterations provided by OR-tree structures as compared to
NOR, NAND, XNOR, and XOR gates, as indicated by results
shown in Fig. 5.

Independent of the utilized circuit topology, the variation
in the distribution of the number of SAT attack iterations due
to variable ordering is an important consideration. Without
accounting for the variation, the level of perceived circuit secu-
rity does not necessarily match the true security provided by
the implemented obfuscation technique.

B. Effect of Initial DIPs on the SAT Attack

Before generating any DIPs with the miter circuit, the SAT
attack, as described in [15], applies the initial input constraints
of all logic 0 and all logic 1. An analysis of the number of
iterations of the SAT attack with and without the initial con-
straints of inputs of all logic 0 and all logic 1 is performed
with results listed in Table I. Each gate type is analyzed with
1,000 random variable orderings of the gate structure shown
in Fig. 3(b) with eight inputs to the tree. A significant differ-
ence is seen in the number of iterations to complete the SAT
attack when comparing the results with and without the initial
constraints of all logic 0 and all logic 1. The results listed in
Table I indicate a 443% and a 636% increase in the number
of SAT attack iterations on average for, respectively, the AND
and OR trees when the initial constraints are removed. Similar
to variable ordering, the variation in the number of SAT attack
iterations due to initial constraints implies a single execution
of the SAT attack provides a limited assessment of the security
of an IC.

Authorized licensed use limited to: Drexel University. Downloaded on July 31,2020 at 13:26:31 UTC from IEEE Xplore. Restrictions apply.

JURETUS AND SAVIDIS: CHARACTERIZATION OF IN-CONE LOGIC LOCKING RESILIENCY AGAINST THE SAT ATTACK 1611

TABLE I
MINIMUM AND AVERAGE NUMBER OF ITERATIONS TO COMPLETE THE

SAT ATTACK WITH AND WITHOUT ALL 0/1 INITIAL CONSTRAINTS FOR

THE TREE STRUCTURE OF FIG. 3(b)

C. Effect of Phase Heuristic on the SAT Attack

SAT solvers employ varying phase heuristics to select
between a true and false assignment of a given variable. To
analyze the effect of the phase heuristic on the efficacy of a
SAT attack, initial default phases of 1) all true, 2) all false,
and 3) an advanced phase heuristic included with the Lingeling
SAT solver [27] are applied to the circuit topology shown in
Fig. 3(b), where the pyramid structure includes 16 inputs for
each gate type. Applying a default phase of true to all inputs
results in the OR-tree topology requiring more iterations on
average than the AND-tree structure, as indicated by the results
provided in Fig. 7. The increase in the number of iterations
of the SAT attack for an OR-tree with a default phase of true
is explained in Section IV-A through the example structure
shown in Fig. 6. Defaulting to a phase of true, or logic 1,
results in a lower probability of the SAT solver selecting a DIP
of all zeros, which masks incorrect key information through-
out the pyramid structure. As information regarding the circuit
is masked, the number of iterations increases on average as
compared to an AND-tree structure.

As the AND-tree structure of the ISCAS’85 c2670 bench-
mark circuit was presented as the primary factor that resulted
in an increase in the security of the circuit in [15], other
researchers applied an AND-tree topology to increase the
security of novel obfuscation techniques [28]. However, the
analysis provided in this paper demonstrates that utilizing a
single tree topology leads to vulnerabilities as an adversary is
able to simply adjust the phase heuristic to more efficiently
attack the implemented obfuscation technique. The analysis
provided in Section IV indicates that the use of a specific cir-
cuit function to increase security provides limited gains as an
adversary is able to 1) transform the circuit to shift control-
lable inputs toward the outputs of the IC, 2) add specific DIPs
to the SAT formulation, and/or 3) alter the phase heuristic
of the solver to reduce the number of iterations required to
determine the key.

V. EFFECT OF LOGIC STRUCTURE ON SAT
ATTACK RESILIENCY

The effects of gate heterogeneity, logical reconvergence, and
number of keys per node are analyzed as each impacts the
efficacy of the SAT attack. The benefits of using an AND-tree
structure to secure combinational logic are described in [15]
when the relatively smaller ISCAS’85 c2670 benchmark cir-
cuit was one of the more challenging to decrypt. Finding

Fig. 7. Simulation of the gate tree structure of Fig. 3b with 1,000 random
netlist orders. The number of iterations required for the SAT attack to decrypt
the tree with a default SAT solver phase of true is quantified. The vertical line
represents the netlist order used in [15]. All nets within the tree are encrypted
for the simulation.

similar logical structures in a netlist that exhibit increased
resiliency to SAT attacks is, therefore, an important step to
secure in-cone logic locking. The study of gate heterogeneity,
where the logical structure of the circuit limits the exposure of
key sequences to a SAT attack, is described in Section V-A.
Logical reconvergence is examined in Section V-B to further
characterize the effect of the circuit structure on the ability to
secure the logic cone. Lastly, an analysis of the security of an
IC against the SAT attack due to the number of applied key
bits per node is provided in Section V-C.

A. Analysis of Gate Heterogeneity

The topology shown in Fig. 3(b) is utilized to charac-
terize the effect gate heterogeneity has on the resiliency of
a circuit against the SAT attack. The topology includes 16
inputs with a varying combination of distributions of logic
gates. The gate types varied from a homogeneous structure of
AND, OR, NOR, and NAND gates to a distribution where the
gate type under evaluation occupied 10% of all the gates in
the netlist and the remaining three gate types occupied 30%
each. In order to limit the effect due to random placement
of key gates, fixed locations representing 25% of the inputs
of the netlist are locked. Each circuit topology is evaluated
for 100 random gate types for each gate distribution. The 100
randomly generated circuits are analyzed for 1,000 random
variable orderings to quantify the level of security provided
by the logical structure of the circuit against the SAT attack.
In order to avoid the formation of homogeneous paths, con-
nected gates are not permitted to be of the same type unless all
other gate types have already met or exceed the target selection
percentage for the given netlist. The average number of itera-
tions required to execute the SAT attack for the 100 randomly
generated netlists across the 1,000 variable orderings is shown
in Fig. 8.

Both the homogeneous AND and OR trees provide a higher
minimum and average number of iterations than the other
gate types and gate distributions as shown in Fig. 8. Using
more heterogeneous gate structures decreases the number of
iterations required to complete the SAT attack on average.

Authorized licensed use limited to: Drexel University. Downloaded on July 31,2020 at 13:26:31 UTC from IEEE Xplore. Restrictions apply.

1612 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 8, AUGUST 2020

Fig. 8. Analysis of each gate type starting as a homogeneous tree (probabil-
ity of dominant gate = 1) and then decreasing the probability of selecting a
dominant gate to 0.1 (0.25 represents an AND, OR, NAND, and NOR selec-
tion probability of 25%). XOR-based logic locking is applied to 25% of the
circuit inputs.

However, there are cases where the number of iterations
increases significantly above the average. Analyzing the struc-
ture of the benchmark circuits that require a larger number
of iterations indicates that the more resilient circuit topolo-
gies limit the degree of freedom of the SAT solver, which
results in an increase in the number of iterations. Therefore,
the circuits that are most secure include a high disparity in the
probability of the output being either logic 0 or logic 1. The
increased degrees of freedom for the SAT solver to generate
DIPs then favors an input pattern that produces the proba-
bilistically favored output (i.e., 0 for an AND gate and 1 for
an OR gate) even in cases where an incorrect key is applied,
decreasing the efficiency of the SAT attack. For example, the
benchmark circuit requiring the highest average number of
iterations has an output probability of 95.67% when produc-
ing a logic 0 and 4.33% when generating a logic 1 with a
topology consisting of 55% OR gates and 15% AND, NAND,
and NOR gates. The benchmark circuit with the lowest aver-
age number of iterations for a topology with 25% of each
gate type has an output probability of 59.1% when producing
a logic 0 and 40.9% when generating a logic 1. The analysis
demonstrates that homogeneous tree structures are not the only
circuit topologies providing increased protection against the
SAT attack. However, the likelihood of randomly generating a
heterogeneous circuit topology that sufficiently skews the out-
put probability is low. The controllability of the gates, or the
disparity between the probability of a logic 0 and 1, therefore,
serves as an important quantifiable parameter to determine the
optimal locations to secure in the netlist.

B. Analysis of Logical Reconvergence

Logical reconvergence, where the fanout from a gate sub-
sequently converges at a downstream gate of the circuit, is
evaluated to characterize the effect on the efficacy of the SAT
attack. Reconvergence of logic is controlled probabilistically
by limiting the number of available nodes that connect to the
next level of logic. As n number of 2-input gates require 2 ∗ n
inputs at a given logic level l, limiting the number of gates

Fig. 9. Analysis of the effect of reconvergence on the number of SAT
iterations required to decrypt the key for a tree structure consisting of gates
of the same type. The largest minimum number of iterations across the 1,000
configurations of the benchmark circuits for each gate type and reconvergence
ratio is listed above each data point.

providing inputs to logic level l to less than 2 ∗ n requires
logical reconvergence within the netlist.

The reconvergence ratio is used to represent the reduction
in the number of inputs applied to logic level l. The maximum
number of inputs is set to 2 ∗ n, which indicates a reconver-
gence ratio of 0. As an example, a reconvergence ratio of 0.4
implies 2 ∗ n ∗ (1 − 0.4) inputs are applied to logic level l.
The results characterizing the effect on the average number
of iterations of the SAT solver due to probabilistically con-
trolling the logical reconvergence are shown in Fig. 9, where
the reconvergence ratio is swept from 0.0 to 0.4. The analysis
consists of generating 1,000 random implementations of logic
locked circuits, each while assuming homogeneous gate types,
a maximum number of inputs of 16, and a 25% overhead in
area. Each of the 1,000 generated implementations is then sub-
jected to 100 random variable orderings to further characterize
the effect on the efficacy of the SAT attack, as discussed in
Section IV-A.

The results shown in Fig. 9 indicate that both the aver-
age number and the largest minimum number of iterations
(shown above each data point) decrease for all gate types
as the reconvergence ratio increases. The reduction in the
number of iterations to complete the SAT attack implies an
increased challenge in masking key information and, there-
fore, hiding the structure of the circuit as the reconvergence
ratio increases. As the level of logical fanout increases, incor-
rect key information spreads across a larger segment of the
circuit, resulting in a lower probability of masking the applied
key bit(s) at the output(s) of the IC.

C. Analysis of the Number of Keys Per Node

The analysis of gate heterogeneity and logical reconver-
gence demonstrates that the structure of a circuit has an impact
on the resiliency against a SAT attack. In-cone logic locking
techniques, for the same overhead in area, either secure more
nodes of the circuit or implement additional key bits at a sin-
gle node. The analysis is completed by replacing a gate(s)
within the ISCAS’85 c5315 circuit netlist with a LUT, where
the number of keys determines the size of the LUT and the

Authorized licensed use limited to: Drexel University. Downloaded on July 31,2020 at 13:26:31 UTC from IEEE Xplore. Restrictions apply.

JURETUS AND SAVIDIS: CHARACTERIZATION OF IN-CONE LOGIC LOCKING RESILIENCY AGAINST THE SAT ATTACK 1613

Fig. 10. Characterization of the effect the number of keys applied at a
given netlist location has on (a) the number of iterations and (b) the run time
required to complete the SAT attack.

number of required LUT select lines is log2(number of keys).
Once the number of select lines to the LUT increases beyond
the total number of inputs to a functional block, false inputs
are added to the LUT. The false inputs are generated from
nearby nets within the circuit and have no effect on the output
of the LUT.

LUT insertion at a single node is compared with random
insertion of XOR gates at multiple nodes within an ISCAS’85
c5315 benchmark circuit, with results shown in Fig. 10. The
number of keys is linearly correlated with the number of iter-
ations required to complete the SAT attack when replacing a
gate, as shown in Fig. 10(a). The number of iterations increases
at a much faster rate for LUT-based logic locking, as compared
to random XOR insertion. The SAT attack has a linear cor-
relation with the number of keys at a given net as a single
DIP only exposes a single key bit of the LUT. In addition to
the linear increase in the number of iterations, the run time
of the SAT attack increases exponentially due to the exponen-
tial increase in the number of variables provided to the SAT
solver. Random XOR insertion matches more closely to LUT-
based insertion with regard to CPU run time as the SAT attack
spends more time searching for a satisfying assignment within
the formulated miter circuit. The tradeoff between securing
more nodes and increasing the number of keys per node also
depends on the allocated overhead in performance, power, and
area. Inserting a LUT requires the use of k 2-input MUXes,
where k is the total number of key bits, which results in a
large power, performance, and area overhead within a small
section of the netlist.

VI. MANAGING THE NUMBER OF CORRECT KEYS

In addition to effecting the ability to secure against the SAT
attack, the logical structure of the circuit also generates con-
ditions that lead to undesired working keys for in-cone logic
locking. To demonstrate, a set of four benchmark circuits are
secured and the key space of each is exhaustively searched
to determine all functional keys. The number of correct keys
generated for four different gate selection algorithms is listed
in Table II. For the i4 benchmark circuit, 128 functional keys
are present when the logic locking algorithm described in [29]
is implemented with a permitted overhead in area of 5%.

The work in [29] highlights the importance of avoiding the
selection of consecutive gates for logic locking as the selected
gates effectively function as a single security gate. Three new

TABLE II
ANALYSIS OF THE NUMBER OF CORRECT KEYS FOR FOUR GATE

SELECTION METHODOLOGIES AND BENCHMARK CIRCUITS. THE AREA

ALLOCATED FOR LOGIC LOCKING IS PROVIDED IN PARENTHESIS

Fig. 11. Example of a buffer/inverter chain topology that must be accounted
for when selecting nets to secure. Selection of nets C, D, or E results in an
increase in the number of functional keys.

rules are, therefore, proposed to control the generation of func-
tional keys for in-cone logic locking, and are described as
1) buffer/inverter separation, 2) insertion on XOR/XNOR
gates, and 3) reconvergent fanout checks.

1) Buffer/Inverter Separation: The first rule accounts for
the presence of buffers or inverters within the netlist. The cir-
cuit topology of concern is shown in Fig. 11, where a key gate
is already placed within the circuit and the selection algorithm
is determining which net to secure next. If the algorithm selects
nets C, D, or E in Fig. 11, the number of generated functional
keys increases as the resulting topology is essentially the same
as a series of key gates.

To prevent the selection and insertion of secure gates on
nets of a buffer/inverter chain, the netlist is traversed from the
input(s) and the output(s) of a placed key gate with buffers and
inverters marked until a non-buffer or non-inverter is reached.
Referring to Fig. 11, the nets C, D, and E are marked with a
penalty term, alerting the selection algorithm that inserting a
key gate at these locations creates multiple functional keys.

2) Insertion on Selected XOR/XNOR Gates: The concern
with inserting key gates before or after an XOR/XNOR
gate is the symmetric nature of the function. Securing both
inputs of a two-input XOR/XNOR results in a functional
key when the two key bits are correct and when the cor-
rect key is inverted. Netlists containing higher percentages of
XOR/XNOR gates are, therefore, susceptible to many working
keys, which explains the results shown in Figs. 4 and 5, where
both the XOR and XNOR gates require the least number of
iterations to decrypt the circuit when executing a SAT attack.
To limit the selection of logic locking gates to a single net
connected to a single input or the output of the XOR/XNOR
gate, a penalty term is applied to the remaining inputs and
the output of the XOR/XNOR gate after the insertion of a
key gate. For example, if input A of a two input XOR gate
is secured, both input B and the output of that XOR gate are
penalized to avoid the generation of undesired working keys.

3) Reconvergent Fanout Check: Another important consid-
eration is the reconvergence of fanouts within the netlist, as
inputs to a gate generated from a common source potentially
reduce the total number of input combinations possible at the
given gate. An example of such a circuit is shown in Fig. 12,

Authorized licensed use limited to: Drexel University. Downloaded on July 31,2020 at 13:26:31 UTC from IEEE Xplore. Restrictions apply.

1614 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 8, AUGUST 2020

Fig. 12. AND gate topology with dependent inputs limiting the possible
functional outputs, which results in multiple correct key values when both
inputs are secured.

Fig. 13. Example circuit that includes pairwise secure key gates K1, K2, and
K3 [29]. The pairwise security of the key bits prevents the key sensitization
attack proposed in [26].

where the inputs to the AND gate never equal one another
(i.e., 00 or 11). The reduction in the possible input combina-
tions of the gate results in the generation of undesired correct
keys when both inputs are secured.

The simplest solution is to only allow the locking of a sin-
gle input of each gate. However, such a solution results in a
large reduction in the possible nets to secure within the circuit.
Tracking and simulating the location and the effect of each
reconvergent fanout is computationally expensive. Therefore,
a tradeoff between increasing computational complexity and
not limiting the nets available when selecting gates for logic
locking is required to efficiently determine the potential for
an undesired increase in the number of functional keys. After
a key gate is inserted, the netlist is traversed from the added
secure gate to the inputs of the circuit, with each visited node
marked. Each of the remaining unsecured inputs to the target
gate are then traversed to the inputs of the circuit. If any of the
marked nodes are encountered during the traversal, a penalty
is applied to those specific inputs of the gate.

VII. OVERVIEW OF MFFC GATE SELECTION

The circuit shown in Fig. 13 includes three pairwise secure
gates to prevent the key sensitization attack [26], [29]. While
the key gates cannot be muted to sensitize the key bits to
individual outputs, consider the case where I1 = 0, I2 = 1,
and I5 = 1. The keyspace of the circuit shown in Fig. 13
is now significantly constrained as setting K1 = 1 results in
an incorrect output for the majority of the applied keys. As
the DIP sequences significantly constrain the keyspace of the
circuit, a novel gate selection strategy is required. The fanout
of incorrect key information is a primary factor in the efficient
determination of the key, as shown in Section V-B.

Increasing the resiliency of a circuit that implements in-
cone logic locking in part relies on controlling the amount
and location of leaked information that the SAT attack uses to
generate DIPs. To ensure that the fanout of logical nets does
not create unintended leakage channels for the SAT attack to
utilize, the concept of MFFCs is developed. An MFFC is a

Fig. 14. Example of an MFFC for net N23. Gates contained within the
MFFC converge to node N23. Dashed edges represent graph edges where
potential XOR/XNOR locking is possible while still being contained within
the MFFC.

cone of logic where a net within the MFFC converges to a
given output net [30]. As an example, consider the ISCAS’85
benchmark c17 circuit shown in Fig. 14, where the MFFC of
net N23 includes all gates contained within the dashed box.
Since the fanout of G4 includes a logical path that does not
converge to N23, it is not part of the MFFC. In addition,
edges that converge at net N23 are potential locations to uti-
lize for XOR/XNOR locking as all leaked information must
propagate through N23. For the circuit shown in Fig. 14, the
edges N16 → G6 and N11 → G5 are, therefore, added to the
list of eligible locations for the insertion of a locking gate.
Returning to the example shown in Fig. 13, if K1 is inserted
only on the edge G1 → G4 and K2 is inserted only on the
edge G2 → G4, the three gates are now pairwise secure and
within an MFFC. The previous scenario, where I1 = 0, I2 = 1,
and I5 = 1, is no longer dependent on any key values, forcing
the SAT attack to generate DIPs that are reliant on all three
key bits. Generating constraints that depend on a greater num-
ber of key bits increases the circuit resiliency against the SAT
attack as more DIPs are needed to determine the correct key
sequence.

A. Determination of MFFCs

To determine the MFFC, a single node is selected and
Algorithm 2 is executed for the list of directly connected
input nodes. When all outputs from a given node are con-
nected to nodes within the MFFC, the given node is added
to the MFFC. The algorithm is then applied recursively to
input nodes that fit the MFFC criteria, termed next_lvl_gates
in Algorithm 2. Edges that fanout to a node contained within
the MFFC are added to the MFFC for the current node eval-
uated by Algorithm 2 (G6 in the example circuit shown in
Fig. 14), but the starting node of the edge is not added to
next_lvl_gates unless all of the fanout paths from the node are
also contained within the MFFC. Nodes and/or edges are tra-
versed and added to the MFFC in topological order. Although
not guaranteed pairwise secure, the generated order provides
inherent pairwise security. The pairwise security due to the
generated MFFC protects against a sensitization attack and
requires a brute force attack with complexity of approximately
2k, where k is the total number of key bits. Therefore, the
SAT attack remains the dominant attack vector. If, however,

Authorized licensed use limited to: Drexel University. Downloaded on July 31,2020 at 13:26:31 UTC from IEEE Xplore. Restrictions apply.

JURETUS AND SAVIDIS: CHARACTERIZATION OF IN-CONE LOGIC LOCKING RESILIENCY AGAINST THE SAT ATTACK 1615

Algorithm 2: Determination of MFFC
Input: Logic level gates, level_gates;
MFFC of Node N list, MN
next_lvl_gates = [];
for gate in level_gates do

fanout_free = True;
tmp_edges = [];
foreach gate_output in gate_outputs do

if gate_output in mffc_nodes then
/* Add gate → gate_output to

tmp_edges */
else

fanout_free = False;
end
if fanout_free then

/* Add node to MFFC */
/* Add gate_inputs of gate to

next_lvl_gates */
end
if next_lvl_gates not empty then

/* Recursively call function with
next_lvl_nodes */

nonmutable edges are needed, then the algorithm in [29] can
be applied to the MFFC nodes.

B. Weighting of the MFFCs

Once the MFFC of each node is calculated, the MFFCs
are sorted by a weighted sum of controllability to determine
the MFFC best suited for the insertion of logic locking gates.
The measure of gate controllability is used due to the results
described in Section V-A, which demonstrated that skewed
gate probabilities result in an increase in the resiliency of the
circuit against the SAT attack. The controllability is heuristi-
cally determined by estimating the probability of a logic 1 and
logic 0 at each node and then taking the absolute difference
between the calculated probabilities. The controllability values
for the nodes in an MFFC are averaged together and multi-
plied by the total number of nodes in the MFFC, or multiplied
by the target number of key gates to insert if the total number
of gates fit within the entire MFFC.

C. XOR-Based Insertion

After the weighted MFFCs are determined, Algorithm 3 is
executed to iteratively insert XOR/XNOR gates. The algorithm
greedily chooses nets to insert an XOR/XNOR based on the
order of the weighted MFFCs. The MFFC with the highest
score is then iterated through in reverse order, as nets closest to
the inputs of the circuit are added last to the MFFC. The edges
and nodes within the MFFC are examined for marks, which
represent a previous selection of the edge and/or a penalty
applied to avoid the generation of multiple working keys. The
process is repeated until the target number of key gates are
inserted into the netlist.

Algorithm 3: Insertion of Logic Locking Gates
Input: Number of Gates to Insert, num_gates;
Node MFFCs, mffcs
while keys_inserted < num_gates do

if use_mux then
enc_nodes = get_mux_enc_node(mffcs);
num_inserted = insert_mux(enc_nodes);

else if remaining_keys > 4 and use_luts then
lut_netlist = get_lut_enc_nodes(mffcs);
num_inserted = insert_lut(lut_netlist);

else
enc_node = get_xor_enc_node(mffcs);
num_inserted = insert_xor(enc_node);

keys_inserted + = num_keys_inserted;
end
/* Determination of XOR Node */
/* Weighted MFFC selected and reversed

so nodes close to inputs are
selected */

for elem in reversed_mffc do
/* Check elem has not been consumed

and is not marked */
if elem in netlist_gates and not_marked then

/* Select Node for locking */
end

D. Heterogeneous LUT-Based Insertion

In addition to a gate insertion strategy for XOR based
logic locking, a LUT based insertion strategy is described that
allows for the placement of heterogeneously sized LUTs into
the circuit netlist. The LUT based algorithm provides a means
to increase the number of keys per node, which was shown
to increase the number of iterations and execution time of
the SAT attack, as described in Section V-C. The maximum
allowed LUT size is set by the max_expansion variable in
Algorithm 4, which is limited to six inputs in this paper.

When LUT-based selection is enabled and the number
of keys available is greater than four, the execution of
Algorithm 3 determines the best candidate locations within the
netlist to insert a LUT. The process begins by examining the
MFFC with the highest weight for each node in reverse order.
However, in contrast to XOR based insertion, the LUT based
algorithm must examine fan-in gates as possible additions to
the LUT structure.

Execution of Algorithm 4 provides a list of candidate gates
to include in a functionally equivalent LUT for each gate
within the highest weighted MFFC. The MFFC of a given
node is also utilized in the algorithm to ensure that gates
do not include fanouts that require gate replication, avoiding
additional overhead when inserting the LUT. When executing
Algorithm 4, the inputs to the current selected gate are ana-
lyzed. The gate is considered a candidate for inclusion in the
LUT if no prior mark for selection is included or no applied
penalty is present. The number of expanded nodes are then
updated to ensure the number of inputs to the LUT has not
exceeded six. The algorithm is recursively called for all poten-
tial candidate gates, allowing for the inclusion of additional

Authorized licensed use limited to: Drexel University. Downloaded on July 31,2020 at 13:26:31 UTC from IEEE Xplore. Restrictions apply.

1616 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 8, AUGUST 2020

Algorithm 4: Determination of LUT Candidate Gates
Input: MFFC of Node node_mffc, List of Node MFFCs

mffcs
/* Access node from node_mffc */
for gi in get_gate_inputs(node) do

if not_marked and gi in node_mffc then
/* Add to candidate nodes */
num_expansion =
get_num_expansion(netlist, lut_nodes);
if num_expansion < max_expansion then

get_expansion_candidates(mffcs[gi])
end

gates into the logically equivalent LUT. As buffers/inverters
within the MFFC of a node do not expand the number of
inputs, the buffers/inverters are possible candidate gates for
inclusion in the logically equivalent LUT, which allows for
additional obfuscation of the original netlist without requiring
an increase in the size of the LUT.

The determination of candidate nodes to include in the
LUT is repeated for each of the nonmarked nodes within the
weighted MFFC, one of which is selected as the insertion
point of the LUT. Once the insertion node for the LUT is
selected, the list of candidate gates generated from the execu-
tion of Algorithm 4 is utilized to include additional gates in
the LUT until 1) all consumable gates are exhausted, 2) the
max_expasion limit is reached, or 3) the limit on the number
of key bits is reached. The netlist of the LUT is then provided
to Algorithm 3, which splices the netlist of the LUT into the
logic structure of the original netlist and removes the original
gates that are obfuscated by the LUT. For this paper, the LUT
insertion procedure is repeated until the target number of key
bits (a user defined parameter) is reached or the remaining
number of key bits is less than four (the minimum number of
key bits needed for a 2-input LUT representation of a gate),
at which point the algorithm utilizes XOR/XNOR based logic
locking to reach the required number of key bits.

E. 2 × 1 MUX-Based Insertion

A 2×1 MUX-based interconnect logic locking algorithm is
also developed, as described by Algorithm 5. A node within
an MFFC is first determined that produces the maximum prob-
ability skew, as described by results provided in Section V-A.
The second input to the MUX is then selected from nodes that
are 1) at lower levels than the max_node in the topological
order and 2) provide a minimum difference in the proba-
bility of the node outputting a logic 0 when subtracting the
probability of logic 0 produced by max_node. The constraint
on topological order prevents the generation of combinational
logic cycles within the netlist. The difference in the probabil-
ity between the two nodes is minimized to reduce the ability
of the SAT attack to determine DIPs that reveal the key of the
MUX. Once selected, the max_node is marked to prevent a
repeated selection of the same node. A MUX is inserted into
the netlist at the target node, with the process described by
Algorithm 5 repeated until the requisite number of MUXes
are added.

Algorithm 5: Determination of MUX Inputs
Input: List of Nodes in MFFCs mffc_nodes
max_skew = 0; max_node = None;
/* Determine node with max skew */
for node in mffc_nodes do

if not_marked then
prob_skew = get_prob_skew(netlist, node);
if prob_skew > max_skew then

max_skew = prob_skew;
max_node = node;

end
/* Find node with close skew */
max_node_lvl = lvl(max_node);
min_skew = 1.0; obs_node = None;
for node in mffc_nodes do

if not_marked and (lvl(node) < max_lvl_node) then
skew_diff =
get_skew_diff (netlist, max_node, node);
if skew_diff < skew_min then

skew_min = skew_diff ;
obs_node = node;

end
/* mark max_node */
return max_node, obs_node;

VIII. RESULTS OF MFFC-BASED GATE SELECTION

The gate selection algorithm is applied to the ISCAS’85
benchmark circuits and to the combinational circuits from
the Microelectronics Center of North Carolina (MCNC), as
described in [15]. Characterization is performed based on
selection of a fraction of the nodes to obfuscate, with an
analysis of locking 5%, 10%, 25%, and 50% of the nodes
performed. The number of implemented key bits remains the
same across all the obfuscation techniques. The developed
MFFC and gate controllability based XOR, LUT, and MUX-
based obfuscation techniques are compared with gate selec-
tion methodologies for in-cone logic locking that include
iolts14 [31], dac12 [29], rnd [10], toc13XOR [11], and
toc13mux [11].

The analysis is performed on 1,000 random variable order-
ings of the netlist and for the Lingeling [27], false, and true
phase heuristics. All simulations were completed on a Xeon
E52687W CPU running at 3 GHz with 95 GB of RAM. The
execution time of the SAT attack is limited to a maximum of
24 hours (86,400 seconds).

The number of SAT iterations for each gate selection
methodology when securing 5% and 25% of the gates of
the circuit is provided in Figs. 15 and 16, respectively. The
results indicate that the developed MFFC-based selection algo-
rithm significantly increases the minimum number of iterations
required to complete the SAT attack for most of the evaluated
benchmark circuits. The exceptions are the c880 benchmark
circuit with 5% of the gates secured in the netlist and the
i9 benchmark circuit with 25% of the gates secured, where
the minimum number of iterations is at most 20.8% lower
than the dac12 [29] methodology. In all cases, the LUT based
selection algorithm meets or further increases the minimum

Authorized licensed use limited to: Drexel University. Downloaded on July 31,2020 at 13:26:31 UTC from IEEE Xplore. Restrictions apply.

JURETUS AND SAVIDIS: CHARACTERIZATION OF IN-CONE LOGIC LOCKING RESILIENCY AGAINST THE SAT ATTACK 1617

Fig. 15. Number of required iterations of the SAT attack for in-cone logic locking gate selection methodologies when securing 5% of the gates in the netlist.
Number of keys shown in parenthesis next to benchmark name. Evaluations are completed with 1,000 random variable orders of the netlist and the default
phase of all logic 0, all logic 1, and the Lingeling phase heuristic [27].

Fig. 16. Number of required iterations of the SAT attack for in-cone logic locking gate selection methodologies when securing 25% of the gates in the
netlist. Number of keys shown in parenthesis next to benchmark name. Evaluations are completed with 1,000 random variable orders of the netlist and the
default phase of all logic 0, all logic 1, and the Lingeling phase heuristic [27].

number of iterations required to execute the SAT attack.
Overall, the XOR MFFC gate selection strategy increases the
minimum number of iterations to complete the SAT attack
by 61.8% and increases, on average, the mean number of
iterations by 80.1% across all benchmark circuits. The XOR
based selection strategy results in a 196.2% increase in the
average CPU run time, with a 119.6% increase in the mini-
mum run time. The LUT MFFC based selection methodology
increases the minimum number of iterations to complete the
SAT attack by 123.6% and increases, on average, the mean
number of iterations by 82.8% across all benchmark cir-
cuits. The LUT based selection strategy results in a 88.2%
increase in the average CPU run time, with a 72.4% increase
in the minimum run time. The 2 × 1 MUX MFFC based
selection methodology increases the minimum number of iter-
ations to complete the SAT attack by 38.2% and increases,
on average, the mean number of iterations by 23.1% across
all benchmark circuits. The MUX based selection strategy
results in a 26.6% increase in the average CPU run time,
with a 17.4% increase in the minimum run time. The power,

performance, and area overheads of the apex2, c432, c499,
c880, ex5, i7, and i9 benchmark circuits are provided in
Table III for the XOR, LUT, and MUX MFFC based gate
selection algorithms and in Table IV for the dac12, iolts14,
rnd, toc13XOR, and toc13mux methodologies. All techniques
were synthesized using Synopsys DC Compiler in a 180 nm
technology, with the toggle rate of the key inputs set to 0%.
Overall, the overheads for all of the techniques are large,
with a few benchmark circuits for each technique resulting
in single digit overheads in area, power, and/or timing. The
one exception is in the power overhead after implementing
the iolts14 selection methodology, which inserts AND and
OR gates into the netlist to increase the switching probabil-
ity of nets specifically to enhance the detection of Trojans
for a given key. However, as the correct key is unknown
when performing the power analysis, the switching activ-
ity of the circuit is modified, which results in a low or
reduced power consumption for iolts14. While the overheads
for the techniques are significant, the primary optimization
criteria is security. A reduction in the overhead is possible

Authorized licensed use limited to: Drexel University. Downloaded on July 31,2020 at 13:26:31 UTC from IEEE Xplore. Restrictions apply.

1618 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 8, AUGUST 2020

TABLE III
AREA, POWER, AND PERFORMANCE OVERHEADS OF THE XOR, LUT, AND MUX OBFUSCATION TECHNIQUES IMPLEMENTING THE MFFC AND GATE

CONTROLLABILITY BASED GATE SELECTION METHODOLOGIES FOR THE BENCHMARK CIRCUITS APEX2, C432, C499, C880, EX5, I7, AND I9

TABLE IV
AREA, POWER, AND PERFORMANCE OVERHEADS OF THE DAC12, IOLTS14, RND, TOC13XOR, AND TOC13MUX LOGIC LOCKING GATE SELECTION

METHODOLOGIES FOR THE APEX2, C432, C499, C880, EX5, I7, AND I9 BENCHMARK CIRCUITS

TABLE V
MINIMUM PERCENTAGE AND AVERAGE PERCENTAGE IMPROVEMENT IN THE MINIMUM NUMBER OF CUBES, MINIMUM NUMBER OF ITERATIONS, AND

MINIMUM CPU TIME OVER 100 VARIABLE ORDERINGS TO COMPLETE THE SAT ATTACK IS PROVIDED FOR THE XOR, LUT, AND MUX BASED

OBFUSCATION TECHNIQUES IMPLEMENTING THE MFFC AND GATE CONTROLLABILITY BASED LOGIC LOCKING GATE SELECTION METHODOLOGY

FOR A 128 BIT KEY AS COMPARED TO THE DAC12, IOLTS14, RND, TOC13XOR, AND TOX13MUX GATE SELECTION METHODOLOGIES

by implementing a gate selection methodology that applies a
multiobjective optimization algorithm.

In addition to the benchmark circuits characterized by
results included in Fig. 15, an analysis of the largest bench-
mark circuits from ISCAS’85 and MCNC is performed, with
the results listed in Table V for a key size of 128 bits. The
minimum number of cubes, number of iterations, and CPU
time for the XOR, LUT, and MUX MFFC based gate selec-
tion methodologies across 100 variable orderings are listed.
The minimum percentage and average percentage increase for
the XOR, LUT, and MUX based techniques when compared
with dac12, toc13XOR, tox13mux, rnd, and iolts14 is also pro-
vided. Shorter CPU run times are observed for the LUT and
MUX based techniques as each iteration is generally shorter
than XOR based methods. The increased iteration time for the
XOR techniques may be an artifact of using a nonincremen-
tal SAT attack [32]. Another consideration is that the iteration
time increases when the oracle model is not provided to the

SAT attack, forcing an adversary to query the IC and wait for
the corresponding response, which often increases the iteration
time.

A. Comparison With SFLL

The corruption of the primary output signals of the obfus-
cated benchmark circuits is analyzed, with results listed in
Table VI for 1,000 random input patterns and 100 random
key patterns applied to each random input. The toc13XOR
and toc13mux techniques provide the highest percentage of
corruption as the techniques were developed to produce a 50%
Hamming distance when compared with the original outputs
of the circuit. In addition, implementation of the MFFC based
techniques results in a lower percentage of corruption as gate
controllability is used as an insertion metric, which favors less
observable gates within the netlist.

The implemented SFLL technique that includes Hamming
distance error correction circuitry is k− log2

(k
h

)
secure against

Authorized licensed use limited to: Drexel University. Downloaded on July 31,2020 at 13:26:31 UTC from IEEE Xplore. Restrictions apply.

JURETUS AND SAVIDIS: CHARACTERIZATION OF IN-CONE LOGIC LOCKING RESILIENCY AGAINST THE SAT ATTACK 1619

TABLE VI
AVERAGE PERCENTAGE OF CORRUPTED OUTPUTS OF THE APEX2, C432,

C499, C880, EX5, I7, AND I9 BENCHMARK CIRCUITS FOR 1,000 RANDOM

INPUT PATTERNS. ONE HUNDRED RANDOM KEY SEQUENCES ARE

APPLIED TO EACH OF THE 1,000 RANDOM INPUT PATTERNS

the SAT attack, where k is the total number of key bits
and h is the target Hamming distance of the primary out-
puts [18]. The probability of a successful attack is, therefore,
q/2k−log2 (k

h), with q number of queries made to the circuit [18].
The number of altered minterms is

(k
h

)
, while the number of

non-altered minterms is (2n −(k
h

)
), where n is the total number

of inputs. The corruption of the outputs of the circuit for a non-
altered minterm is

(k
h

)
/2k, while an altered minterm results in

(2k −(k
h

)
)/2k corrupted outputs. The number of iterations for a

success rate of 50% and the corresponding percentage of cor-
rupted outputs are listed in Table VII for h = k/4, k/3, and
k/2. The data indicates that for lower k values and increased
levels of output corruption, in-cone techniques are capable of
outperforming out-of-cone techniques. The analysis is com-
pleted by applying the SAT attack, and not the more recently
developed dominant attack vector for SFLL described in [23],
where properties of the Hamming distance checking circuitry
are exploited.

IX. DISCUSSION OF TRENDS IN LOGIC LOCKING

While out-of-cone techniques such as SFLL provide prov-
able security against the SAT attack when the number of
key bits is large, the data listed in Table VII indicates that
the security is not adequate when the number of key bits is
limited and the desired level of corruption of the primary out-
puts is high. In-cone techniques, such as the MFFC based
methods developed in this paper, outperform SFLL for a low
number of key bits and for circuit conditions that require a
higher level of output corruption. However, even though the
resiliency against the SAT attack increases, execution of the
SAT attack still determines the correct key within tens of sec-
onds. The concern is that even for large circuits, scan chain
access partitions the IC into smaller blocks that provide an
easy means to attack obfuscated circuits. Scan chain obfusca-
tion, such as the work proposed in [33]–[40], is consequently
vital to the effective implementation of logic locking tech-
niques. However, many of the methods that obfuscate the scan
chain do not secure the logic between the registers, which
allows for the reverse engineering of the IC. Modifications to
the logic cones between registers is, therefore, needed, while
accounting for the analysis and results presented in this paper
since attacks without scan chain access exist [41]. Any novel

TABLE VII
ANALYSIS OF THE AVERAGE NUMBER OF ITERATIONS AND OUTPUT

CORRUPTION PERCENTAGE FOR h = k/4, k/3, AND k/2 WHEN

IMPLEMENTING SFLL

technique must ensure obfuscation of both the scan chain and
logic cone, with selection of the specific logic locking imple-
mentation dependent on the number of cone inputs, desired
level of output corruption, and the cone structure, as indicated
by the results in this paper.

X. CONCLUSION

The effect logical structure has on the security provided
by in-cone logic locking techniques against the SAT attack
is analyzed for gate heterogeneity, logical reconvergence, and
the number of key bits per node. Based on the analysis, three
novel algorithms utilizing MFFCs and gate controllability are
developed to increase the resiliency of in-cone logic locking
against the SAT attack. The developed XOR MFFC based
algorithm results in an average increase in the minimum num-
ber of iterations to complete the SAT attack by 61.8% and
an increase in the average number of iterations by 80.1%
when securing 5% of the gates within the netlist, while the
LUT MFFC based algorithm increases the minimum number
of iterations by 123.6% and the average number of iterations
by 82.8%. The 2 × 1 MUX MFFC based selection methodol-
ogy increases the minimum number of iterations to complete
the SAT attack by 38.2% and increases, on average, the mean
number of iterations by 23.1% across all benchmark circuits.
The developed techniques are analyzed for output corrup-
tion, and are compared with the SFLL out-of-cone technique
presented in [18], where the developed techniques outperform
SFLL when the size of the key space is limited. The analysis
of logic locking techniques described in this paper provides
guidance to increase the resiliency of in-cone techniques to
SAT attacks.

REFERENCES

[1] DigiTimes. (Mar. 2012). Trends in the Global IC Design
Service Market. [Online]. Available: http://www.digitimes.com/
news/a20120313RS400.html?chid=2

[2] Trusted Integrated Chips (TIC) Program, IARPA, Riverdale Park, MD,
USA, Oct. 2011, pp. 4–5.

[3] Defense Industrial Base Assessment: Counterfeit Electronics, U.S. Dept.
Commerce, Washington, DC, USA, 2010.

[4] Committee on Armed Services, Inquiry Into Counterfeit Electronics
Parts in the Department of Defense Supply Chain. Washington, DC,
USA: United States Senate, May 2012.

[5] S. Skorobogatov and C. Woods, “Breakthrough silicon scanning discov-
ers backdoor in military chip,” in Proc. Int. Conf. Cryptograph. Hardw.
Embedded Syst., Leuven, Belgium, Sep. 2012, pp. 23–40.

Authorized licensed use limited to: Drexel University. Downloaded on July 31,2020 at 13:26:31 UTC from IEEE Xplore. Restrictions apply.

1620 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 8, AUGUST 2020

[6] R. W. Jarvis and M. G. McIntyre, “Split manufacturing method for
advanced semiconductor circuits,” U.S. Patent 7 195 931, 2004.

[7] J. P. Baukus, L. W. Chow, R. P. Cocchi, P. Ouyang, and B. J. Wang,
“Camouflaging a standard cell based integrated circuit,” U.S. Patent
8 151 235, 2012.

[8] J. P. Baukus, L. W. Chow, R. P. Cocchi, P. Ouyang, and B. J. Wang,
“Building block for secure CMOS logic cell library,” U.S. Patent
8 111 089, 2012.

[9] J. P. Baukus, L. W. Chow, J. Clark, and G. J. Harbison, “Conductive
channel pseudo block process and circuit to inhibit reverse engineering,”
U.S. Patent 8 258 583, 2012.

[10] J. A. Roy, F. Koushanfar, and I. L. Markov, “Ending piracy of integrated
circuits,” Computer, vol. 43, no. 10, pp. 30–38, Oct. 2010.

[11] J. Rajendran et al., “Fault analysis-based logic encryption,” IEEE Trans.
Comput., vol. 64, no. 2, pp. 410–424, Feb. 2015.

[12] K. Juretus and I. Savidis, “Reduced overhead gate level logic encryp-
tion,” in Proc. IEEE/ACM Great Lakes Symp. VLSI, May 2016,
pp. 15–20.

[13] K. Juretus and I. Savidis, “Reducing logic encryption overhead through
gate level key insertion,” in Proc. IEEE Int. Conf. Circuits Syst.,
May 2016, pp. 1714–1717.

[14] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC piracy using
reconfigurable logic barriers,” IEEE Des. Test. Comput., vol. 27, no. 1,
pp. 66–75, Jan./Feb. 2010.

[15] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of
logic encryption algorithms,” in Proc. IEEE Int. Symp. Hardw. Oriented
Security Trust, May 2015, pp. 137–143.

[16] Y. Xie and A. Srivastava, “Mitigating SAT attack on logic locking,”
in Proc. Int. Conf. Cryptograph. Hardw. Embedded Syst., Jun. 2016,
pp. 127–146.

[17] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, “SARLock:
SAT attack resistant logic locking,” in Proc. IEEE Int. Symp. Hardw.
Oriented Security Trust, May 2016, pp. 236–241.

[18] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and
O. Sinanoglu, “Provably-secure logic locking: From theory to practice,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Security, Nov. 2017,
pp. 1601–1618,

[19] M. Li et al., “Provably secure camouflaging strategy for IC protection,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 8,
pp. 1399–1412, Aug. 2019.

[20] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately deobfuscating integrated circuits,” in Proc. IEEE Int.
Symp. Hardw. Oriented Security Trust, May 2017, pp. 95–100.

[21] Y. Shen and H. Zhou, “Double DIP: Re-evaluating security of logic
encryption algorithms,” in Proc. Great Lakes Symp. VLSI, May 2017,
pp. 179–184.

[22] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal
attacks on logic locking and camouflaging techniques,” IEEE Trans.
Emerg. Topics Comput., to be published.

[23] D. Sirone and P. Subramanyan, “Functional analysis attacks on logic
locking,” in Proc. IEEE Design Autom. Test Europe Conf., Mar. 2019,
pp. 936–939.

[24] Y. Shen, Y. Li, S. Kong, A. Rezaei, and H. Zhou, “SigAttack: New
high-level SAT-based attack on logic encryptions,” in Proc. IEEE Design
Autom. Test Europe Conf., Mar. 2019, pp. 940–943.

[25] G. S. Tseytin, “On the complexity of derivations in the propositional
calculus,” in Studies in the Mathematics and Mathematical Logic, Part 2.
New York, NY, USA: Consultants Bureau, 1968, pp. 115–125.

[26] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis
of logic obfuscation,” in Proc. ACM/EDAC/IEEE Design Autom. Conf.,
Jun. 2012, pp. 83–89.

[27] A. Niemetz, M. Preiner, and A. Biere, “Boolector at the SMT compe-
tition 2015,” Inst. Formal Models Verification, Johannes Kepler Univ.,
Linz, Austria, Rep. 15/1, Jun. 2015.

[28] K. Shamsi, W. Wen, and Y. Jin, “Hardware security challenges beyond
CMOS: Attacks and remedies,” in Proc. IEEE Comput. Soc. Annu. Symp.
VLSI, Jul. 2016, pp. 200–205.

[29] M. Yasin, J. J. V. Rajendran, O. Sinanoglu, and R. Karri, “On improving
the security of logic locking,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 35, no. 9, pp. 1411–1424, Sep. 2016.

[30] J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA
technology mapping,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 2, no. 2, pp. 137–148, Jun. 1994.

[31] S. Dupuis, P.-S. Ba, G. Di Natale, M.-L. Flottes, and B. Rouzeyre, “A
novel hardware logic encryption technique for thwarting illegal overpro-
duction and hardware trojans,” in Proc. IEEE Int. On-Line Test. Symp.,
Jul. 2014, pp. 49–54,

[32] C. Yu, X. Zhang, D. Liu, M. Ciesielski, and D. Holcomb, “Incremental
SAT-based reverse engineering of camouflaged logic circuits,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 10,
pp. 1647–1659, Oct. 2017.

[33] G. Sengar, D. Mukhopadhyay, and D. R. Chowdhury, “Secured flipped
scan-chain model for crypto-architecture,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 26, no. 11, pp. 2080–2084, Nov. 2007.

[34] Y. Atobe, Y. Shi, M. Yanagisawa, and N. Togawa, “Dynamically change-
able secure scan architecture against scan-based side channel attack,” in
Proc. IEEE Int. SoC Design Conf., Nov. 2012, pp. 155–158.

[35] R. Karmakar, S. Chattopadhyay, and R. Kapur, “Encrypt flip-flop: A
novel logic encryption technique for sequential circuits,” Comput. Res.
Repository, vol. abs/1801.04961, pp. 1–14, Aug. 2018.

[36] J. Lee, M. Tehranipoor, and J. Plusquellic, “A low-cost solution for
protecting IPs against scan-based side-channel attacks,” in Proc. IEEE
VLSI Test Symp., Apr. 2006, pp. 1–6.

[37] M. A. Razzaq, V. Singh, and A. Singh, “SSTKR: Secure and testable
scan design through test key randomization,” in Proc. IEEE Asian Test
Symp., Nov. 2011, pp. 60–65.

[38] S. Paul, R. S. Chakraborty, and S. Bhunia, “VIm-Scan: A low overhead
scan design approach for protection of secret key in scan-based secure
chips,” in Proc. IEEE VLSI Test Symp., May 2007, pp. 455–460.

[39] X. Wang, D. Zhang, M. He, D. Su, and M. Tehranipoor, “Secure scan and
test using obfuscation throughout supply chain,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 37, no. 9, pp. 1867–1880,
Sep. 2018.

[40] U. Guin, Z. Zhou, and A. Singh, “Robust design-for-security architecture
for enabling trust in IC manufacturing and test,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 26, no. 5, pp. 818–830, May 2018.

[41] M. E. Massad, S. Garg, and M. Tripunitara, “Reverse engineering cam-
ouflaged sequential circuits without scan access,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design, Nov. 2017, pp. 33–40.

Kyle Juretus (S’11) received the Bachelor of
Science degree in computer and electrical engineer-
ing and the Master of Science degree in computer
engineering from Drexel University, Philadelphia,
PA, USA, in 2014 and 2016, respectively, where
he is currently pursuing the Ph.D. degree with
the Integrated Circuits and Electronics (ICE)
Laboratory.

His current research interests include circuit level
techniques to prevent intellectual property theft and
counterfeiting, mitigating side-channel leakage of

integrated circuit designs, and design automation for hardware security.
Mr. Juretus is currently a National Defense Science and Engineering Fellow.

Ioannis Savidis (S’03–M’13–SM’18) received the
B.S.E. degree in electrical and computer engineering
and biomedical engineering from Duke University,
Durham, NC, USA, in 2005, and the M.Sc. and
Ph.D. degrees in electrical and computer engineer-
ing from the University of Rochester, Rochester, NY,
USA, in 2007 and 2013, respectively.

In 2013, he joined the Department of Electrical
and Computer Engineering, Drexel University,
Philadelphia, PA, USA, where he is currently
an Associate Professor and directs the Integrated

Circuits and Electronics Design and Analysis Laboratory. His current research
interests include analysis, modeling, and design methodologies for high
performance digital and mixed-signal integrated circuits, power management
for SoC and microprocessor circuits, hardware security, including digital and
analog obfuscation and Trojan detection, and electric and thermal modeling
and characterization, signal and power integrity, and power and clock delivery
for heterogeneous 2-D and 3-D circuits.

Dr. Savidis is a recipient of the 2018 National Science Foundation Early
Faculty (CAREER) Award. He serves on the organizing committees of the
IEEE International Symposium on Hardware Oriented Security and Trust, the
ACM Great Lakes Symposium on VLSI, and the International Verification
and Security Workshop. He is a member of the Association of Computing
Machinery, the IEEE Circuits and Systems Society, the IEEE Communications
Society, and the IEEE Electron Devices Society. He also serves on the editorial
boards of the IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION

SYSTEMS (VLSI), the Microelectronics Journal, and the Journal of Circuits,
Systems and Computers.

Authorized licensed use limited to: Drexel University. Downloaded on July 31,2020 at 13:26:31 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

